The Stacks project

Lemma 35.4.16. For $(M,\theta ) \in DD_{S/R}$, the diagram

35.4.16.1
\begin{equation} \label{descent-equation-equalizer-M} \xymatrix@C=8pc{ M \ar[r]^{\theta \circ (1_ M \otimes \delta _0^1)} & M \otimes _{S, \delta _1^1} S_2 \ar@<1ex>[r]^{(\theta \otimes \delta _2^2) \circ (1_ M \otimes \delta ^2_0)} \ar@<-1ex>[r]_{1_{M \otimes S_2} \otimes \delta ^2_1} & M \otimes _{S, \delta _{12}^1} S_3 } \end{equation}

is a split equalizer.

Proof. Define the ring homomorphisms $\sigma ^0_0: S_2 \to S_1$ and $\sigma _0^1, \sigma _1^1: S_3 \to S_2$ by the formulas

\begin{align*} \sigma ^0_0 (a_0 \otimes a_1) & = a_0a_1 \\ \sigma ^1_0 (a_0 \otimes a_1 \otimes a_2) & = a_0a_1 \otimes a_2 \\ \sigma ^1_1 (a_0 \otimes a_1 \otimes a_2) & = a_0 \otimes a_1a_2. \end{align*}

We then take the auxiliary morphisms to be $1_ M \otimes \sigma _0^0: M \otimes _{S, \delta _1^1} S_2 \to M$ and $1_ M \otimes \sigma _0^1: M \otimes _{S,\delta _{12}^1} S_3 \to M \otimes _{S, \delta _1^1} S_2$. Of the compatibilities required in (35.4.2.1), the first follows from tensoring the cocycle condition (35.4.14.1) with $\sigma _1^1$ and the others are immediate. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 35.4: Descent for universally injective morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08WZ. Beware of the difference between the letter 'O' and the digit '0'.