Lemma 47.2.4. Let $R$ be a ring. Let $M \subset N$ be $R$-modules. The following are equivalent
$M \subset N$ is an essential extension,
for all $x \in N$ nonzero there exists an $f \in R$ such that $fx \in M$ and $fx \not= 0$.
Lemma 47.2.4. Let $R$ be a ring. Let $M \subset N$ be $R$-modules. The following are equivalent
$M \subset N$ is an essential extension,
for all $x \in N$ nonzero there exists an $f \in R$ such that $fx \in M$ and $fx \not= 0$.
Proof. Assume (1) and let $x \in N$ be a nonzero element. By (1) we have $Rx \cap M \not= 0$. This implies (2).
Assume (2). Let $N' \subset N$ be a nonzero submodule. Pick $x \in N'$ nonzero. By (2) we can find $f \in R$ with $fx \in M$ and $fx \not= 0$. Thus $N' \cap M \not= 0$. $\square$
Comments (0)
There are also: