The Stacks project

Lemma 5.26.4. Let $f : X \to Y$ be a continuous map of Hausdorff quasi-compact topological spaces. If $Y$ is extremally disconnected, $f$ is surjective, and $f(Z) \not= Y$ for every proper closed subset $Z$ of $X$, then $f$ is a homeomorphism.

Proof. By Lemma 5.17.8 it suffices to show that $f$ is injective. Suppose that $x, x' \in X$ are distinct points with $y = f(x) = f(x')$. Choose disjoint open neighbourhoods $U, U' \subset X$ of $x, x'$. Observe that $f$ is closed (Lemma 5.17.7) hence $T = f(X \setminus U)$ and $T' = f(X \setminus U')$ are closed in $Y$. Since $X$ is the union of $X \setminus U$ and $X \setminus U'$ we see that $Y = T \cup T'$. By Lemma 5.26.2 we see that $y$ is contained in the closure of $Y \setminus T$ and the closure of $Y \setminus T'$. On the other hand, by Lemma 5.26.3, this intersection is empty. In this way we obtain the desired contradiction. $\square$


Comments (0)

There are also:

  • 13 comment(s) on Section 5.26: Extremally disconnected spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08YL. Beware of the difference between the letter 'O' and the digit '0'.