Lemma 47.7.5. Let $(R, \mathfrak m, \kappa )$ be a Noetherian local ring. Let $E$ be an injective hull of $\kappa $ over $R$. Then $\mathop{\mathrm{Hom}}\nolimits _ R(E, E)$ is canonically isomorphic to the completion of $R$.
Proof. Write $E = \bigcup E_ n$ with $E_ n = E[\mathfrak m^ n]$ as in Lemma 47.7.3. Any endomorphism of $E$ preserves this filtration. Hence
\[ \mathop{\mathrm{Hom}}\nolimits _ R(E, E) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ R(E_ n, E_ n) \]
The lemma follows as $\mathop{\mathrm{Hom}}\nolimits _ R(E_ n, E_ n) = \mathop{\mathrm{Hom}}\nolimits _{R/\mathfrak m^ n}(E_ n, E_ n) = R/\mathfrak m^ n$ by Lemma 47.6.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: