The Stacks project

Lemma 5.7.9. Let $X$ be a topological space. Let $\pi _0(X)$ be the set of connected components of $X$. Let $X \to \pi _0(X)$ be the map which sends $x \in X$ to the connected component of $X$ passing through $x$. Endow $\pi _0(X)$ with the quotient topology. Then $\pi _0(X)$ is a totally disconnected space and any continuous map $X \to Y$ from $X$ to a totally disconnected space $Y$ factors through $\pi _0(X)$.

Proof. By Lemma 5.7.5 the connected components of $\pi _0(X)$ are the singletons. We omit the proof of the second statement. $\square$

Comments (0)

There are also:

  • 10 comment(s) on Section 5.7: Connected components

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08ZL. Beware of the difference between the letter 'O' and the digit '0'.