The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

5.7 Connected components

Definition 5.7.1. Let $X$ be a topological space.

  1. We say $X$ is connected if $X$ is not empty and whenever $X = T_1 \amalg T_2$ with $T_ i \subset X$ open and closed, then either $T_1 = \emptyset $ or $T_2 = \emptyset $.

  2. We say $T \subset X$ is a connected component of $X$ if $T$ is a maximal connected subset of $X$.

The empty space is not connected.

Lemma 5.7.2. Let $f : X \to Y$ be a continuous map of topological spaces. If $E \subset X$ is a connected subset, then $f(E) \subset Y$ is connected as well.

Proof. Omitted. $\square$

Lemma 5.7.3. Let $X$ be a topological space.

  1. If $T \subset X$ is connected, then so is its closure.

  2. Any connected component of $X$ is closed (but not necessarily open).

  3. Every connected subset of $X$ is contained in a unique connected component of $X$.

  4. Every point of $X$ is contained in a unique connected component, in other words, $X$ is the union of its connected components.

Proof. Let $\overline{T}$ be the closure of the connected subset $T$. Suppose $\overline{T} = T_1 \amalg T_2$ with $T_ i \subset \overline{T}$ open and closed. Then $T = (T\cap T_1) \amalg (T \cap T_2)$. Hence $T$ equals one of the two, say $T = T_1 \cap T$. Thus clearly $\overline{T} \subset T_1$ as desired.

Pick a point $x\in X$. Consider the set $A$ of connected subsets $x \in T_\alpha \subset X$. Note that $A$ is nonempty since $\{ x\} \in A$. There is a partial ordering on $A$ coming from inclusion: $\alpha \leq \alpha ' \Leftrightarrow T_\alpha \subset T_{\alpha '}$. Choose a maximal totally ordered subset $A' \subset A$, and let $T = \bigcup _{\alpha \in A'} T_\alpha $. We claim that $T$ is connected. Namely, suppose that $T = T_1 \amalg T_2$ is a disjoint union of two open and closed subsets of $T$. For each $\alpha \in A'$ we have either $T_\alpha \subset T_1$ or $T_\alpha \subset T_2$, by connectedness of $T_\alpha $. Suppose that for some $\alpha _0 \in A'$ we have $T_{\alpha _0} \not\subset T_1$ (say, if not we're done anyway). Then, since $A'$ is totally ordered we see immediately that $T_\alpha \subset T_2$ for all $\alpha \in A'$. Hence $T = T_2$.

To get an example where connected components are not open, just take an infinite product $\prod _{n \in \mathbf{N}} \{ 0, 1\} $ with the product topology. Its connected components are singletons, which are not open. $\square$

Lemma 5.7.4. Let $f : X \to Y$ be a continuous map of topological spaces. Assume that

  1. all fibres of $f$ are connected, and

  2. a set $T \subset Y$ is closed if and only if $f^{-1}(T)$ is closed.

Then $f$ induces a bijection between the sets of connected components of $X$ and $Y$.

Proof. Let $T \subset Y$ be a connected component. Note that $T$ is closed, see Lemma 5.7.3. The lemma follows if we show that $f^{-1}(T)$ is connected because any connected subset of $X$ maps into a connected component of $Y$ by Lemma 5.7.2. Suppose that $f^{-1}(T) = Z_1 \amalg Z_2$ with $Z_1$, $Z_2$ closed. For any $t \in T$ we see that $f^{-1}(\{ t\} ) = Z_1 \cap f^{-1}(\{ t\} ) \amalg Z_2 \cap f^{-1}(\{ t\} )$. By (1) we see $f^{-1}(\{ t\} )$ is connected we conclude that either $f^{-1}(\{ t\} ) \subset Z_1$ or $f^{-1}(\{ t\} ) \subset Z_2$. In other words $T = T_1 \amalg T_2$ with $f^{-1}(T_ i) = Z_ i$. By (2) we conclude that $T_ i$ is closed in $Y$. Hence either $T_1 = \emptyset $ or $T_2 = \emptyset $ as desired. $\square$

Lemma 5.7.5. Let $f : X \to Y$ be a continuous map of topological spaces. Assume that (a) $f$ is open, (b) all fibres of $f$ are connected. Then $f$ induces a bijection between the sets of connected components of $X$ and $Y$.

Proof. This is a special case of Lemma 5.7.4. $\square$

Lemma 5.7.6. Let $f : X \to Y$ be a continuous map of nonempty topological spaces. Assume that (a) $Y$ is connected, (b) $f$ is open and closed, and (c) there is a point $y\in Y$ such that the fiber $f^{-1}(y)$ is a finite set. Then $X$ has at most $|f^{-1}(y)|$ connected components. Hence any connected component $T$ of $X$ is open and closed, and $f(T)$ is a nonempty open and closed subset of $Y$, which is therefore equal to $Y$.

Proof. If the topological space $X$ has at least $N$ connected components for some $N \in \mathbf{N}$, we find by induction a decomposition $X = X_1 \amalg \ldots \amalg X_ N$ of $X$ as a disjoint union of $N$ nonempty open and closed subsets $X_1, \ldots , X_ N$ of $X$. As $f$ is open and closed, each $f(X_ i)$ is a nonempty open and closed subset of $Y$ and is hence equal to $Y$. In particular the intersection $X_ i \cap f^{-1}(y)$ is nonempty for each $1 \leq i \leq N$. Hence $f^{-1}(y)$ has at least $N$ elements. $\square$

Definition 5.7.7. A topological space is totally disconnected if the connected components are all singletons.

A discrete space is totally disconnected. A totally disconnected space need not be discrete, for example $\mathbf{Q} \subset \mathbf{R}$ is totally disconnected but not discrete.

Lemma 5.7.8. Let $X$ be a topological space. Let $\pi _0(X)$ be the set of connected components of $X$. Let $X \to \pi _0(X)$ be the map which sends $x \in X$ to the connected component of $X$ passing through $x$. Endow $\pi _0(X)$ with the quotient topology. Then $\pi _0(X)$ is a totally disconnected space and any continuous map $X \to Y$ from $X$ to a totally disconnected space $Y$ factors through $\pi _0(X)$.

Proof. By Lemma 5.7.4 the connected components of $\pi _0(X)$ are the singletons. We omit the proof of the second statement. $\square$

Definition 5.7.9. A topological space $X$ is called locally connected if every point $x \in X$ has a fundamental system of connected neighbourhoods.

Lemma 5.7.10. Let $X$ be a topological space. If $X$ is locally connected, then

  1. any open subset of $X$ is locally connected, and

  2. the connected components of $X$ are open.

So also the connected components of open subsets of $X$ are open. In particular, every point has a fundamental system of open connected neighbourhoods.

Proof. Omitted. $\square$

Comments (6)

Comment #146 by on

Right after 004S, I guess it should read "The empty space is not connected", right?

Comment #1339 by Robert Green on

Some conventions simply defined a connected topological has you do, but without the non-empty hypothesis. Why did you opted for assuming that connected spaces are not empty ?

Comment #1358 by on

The reason is the same as the one where we do not allow to be a prime number. Namely, we want to have a unique decomposition into connected components and we want to empty space to have no connected components.

Comment #3378 by Kazuki Masugi on

In the Lemma5.7.6, "p(T)" should be "f(T)".

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 004R. Beware of the difference between the letter 'O' and the digit '0'.