Remark 5.7.4. Let $X$ be a topological space and $x \in X$. Let $Z \subset X$ be the connected component of $X$ passing through $x$. Consider the intersection $E$ of all open and closed subsets of $X$ containing $x$. It is clear that $Z \subset E$. In general $Z \not= E$. For example, let $X = \{ x, y, z_1, z_2, \ldots \} $ with the topology with the following basis of opens, $\{ z_ n\} $, $\{ x, z_ n, z_{n + 1}, \ldots \} $, and $\{ y, z_ n, z_{n + 1}, \ldots \} $ for all $n$. Then $Z = \{ x\} $ and $E = \{ x, y\} $. We omit the details.
[Example 6.1.24, Engelking]
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8818 by uikmuuyiok on
Comment #9270 by Stacks project on
There are also: