Lemma 5.26.7. Let $f : X \to X$ be a surjective continuous selfmap of a Hausdorff topological space. If $f$ is not $\text{id}_ X$, then there exists a proper closed subset $E \subset X$ such that $X = E \cup f(E)$.
Proof. Pick $p \in X$ with $f(p) \not= p$. Choose disjoint open neighbourhoods $p \in U$, $f(p) \in V$ and set $E = X \setminus U \cap f^{-1}(V)$. Then $p \not\in E$ hence $E$ is a proper closed subset. If $x \in X$, then either $x \in E$, or if not, then $x \in U \cap f^{-1}(V)$. Writing $x = f(y)$ (possible as $f$ is surjective). If $y \in U \cap f^{-1}(V)$ then we would have $x = f(y) \in V$ which is a contradiction with $x \in U$. Hence $y \in E$ and $x \in f(E)$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8766 by Peter Fleischmann on
Comment #9305 by Stacks project on
There are also: