Lemma 10.95.7. Let $A$ be a ring. Let $I = (f_1, \ldots , f_ r)$ be a finitely generated ideal. If $M \to \mathop{\mathrm{lim}}\nolimits M/f_ i^ nM$ is surjective for each $i$, then $M \to \mathop{\mathrm{lim}}\nolimits M/I^ nM$ is surjective.

**Proof.**
Note that $\mathop{\mathrm{lim}}\nolimits M/I^ nM = \mathop{\mathrm{lim}}\nolimits M/(f_1^ n, \ldots , f_ r^ n)M$ as $I^ n \supset (f_1^ n, \ldots , f_ r^ n) \supset I^{rn}$. An element $\xi $ of $\mathop{\mathrm{lim}}\nolimits M/(f_1^ n, \ldots , f_ r^ n)M$ can be symbolically written as

with $x_{n, i} \in M$. If $M \to \mathop{\mathrm{lim}}\nolimits M/f_ i^ nM$ is surjective, then there is an $x_ i \in M$ mapping to $\sum x_{n, i} f_ i^ n$ in $\mathop{\mathrm{lim}}\nolimits M/f_ i^ nM$. Then $x = \sum x_ i$ maps to $\xi $ in $\mathop{\mathrm{lim}}\nolimits M/I^ nM$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)