The Stacks project

Lemma 15.27.4. Let $A$ be a Noetherian ring. Let $I$ be an ideal of $A$. Let $(M_ n)$ be an inverse system of $A$-modules such that

  1. $M_ n$ is a flat $A/I^ n$-module,

  2. $M_{n + 1} \to M_ n$ is surjective.

Then $M = \mathop{\mathrm{lim}}\nolimits M_ n$ is a flat $A$-module and $Q \otimes _ A M = \mathop{\mathrm{lim}}\nolimits Q \otimes _ A M_ n$ for every finite $A$-module $Q$.

Proof. We first show that $Q \otimes _ A M = \mathop{\mathrm{lim}}\nolimits Q \otimes _ A M_ n$ for every finite $A$-module $Q$. Choose a resolution $F_2 \to F_1 \to F_0 \to Q \to 0$ by finite free $A$-modules $F_ i$. Then

\[ F_2 \otimes _ A M_ n \to F_1 \otimes _ A M_ n \to F_0 \otimes _ A M_ n \]

is a chain complex whose homology in degree $0$ is $Q \otimes _ A M_ n$ and whose homology in degree $1$ is

\[ \text{Tor}_1^ A(Q, M_ n) = \text{Tor}_1^ A(Q, A/I^ n) \otimes _{A/I^ n} M_ n \]

as $M_ n$ is flat over $A/I^ n$. By Lemma 15.27.3 we see that this system is essentially constant (with value $0$). It follows from Homology, Lemma 12.31.7 that $\mathop{\mathrm{lim}}\nolimits Q \otimes _ A M_ n = \mathop{\mathrm{Coker}}(\mathop{\mathrm{lim}}\nolimits F_1 \otimes _ A M_ n \to \mathop{\mathrm{lim}}\nolimits F_0 \otimes _ A M_ n)$. Since $F_ i$ is finite free this equals $\mathop{\mathrm{Coker}}(F_1 \otimes _ A M \to F_0 \otimes _ A M) = Q \otimes _ A M$.

Next, let $Q \to Q'$ be an injective map of finite $A$-modules. We have to show that $Q \otimes _ A M \to Q' \otimes _ A M$ is injective (Algebra, Lemma 10.39.5). By the above we see

\[ \mathop{\mathrm{Ker}}(Q \otimes _ A M \to Q' \otimes _ A M) = \mathop{\mathrm{Ker}}(\mathop{\mathrm{lim}}\nolimits Q \otimes _ A M_ n \to \mathop{\mathrm{lim}}\nolimits Q' \otimes _ A M_ n). \]

For each $n$ we have an exact sequence

\[ \text{Tor}_1^ A(Q', M_ n) \to \text{Tor}_1^ A(Q'', M_ n) \to Q \otimes _ A M_ n \to Q' \otimes _ A M_ n \]

where $Q'' = \mathop{\mathrm{Coker}}(Q \to Q')$. Above we have seen that the inverse systems of Tor's are essentially constant with value $0$. It follows from Homology, Lemma 12.31.7 that the inverse limit of the right most maps is injective. $\square$

Comments (4)

Comment #8311 by Shizhang on

LHS of the formula below Lemma 12.31.7 should be lim Q ⊗_{A} M_n

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0912. Beware of the difference between the letter 'O' and the digit '0'.