Lemma 15.87.8. Let $(A_ n)$ be an inverse system of rings. Every $K \in D(\textit{Mod}(\mathbf{N}, (A_ n)))$ can be represented by a system of complexes $(K_ n^\bullet )$ such that each $K_ n^\bullet $ is K-flat.
Proof. First use Lemma 15.87.7 to represent $K$ by a system of complexes $(M_ n^\bullet )$ such that all the transition maps $M_{n + 1}^\bullet \to M_ n^\bullet $ are surjective. Next, let $K_1^\bullet \to M_1^\bullet $ be a quasi-isomorphism with $K_1^\bullet $ a K-flat complex of $A_1$-modules (Lemma 15.59.10). Suppose we have constructed $K_ n^\bullet \to K_{n - 1}^\bullet \to \ldots \to K_1^\bullet $ and maps of complexes $\psi _ e : K_ e^\bullet \to M_ e^\bullet $ such that
commutes for all $e < n$. Then we consider the diagram
in $D(A_{n + 1})$. As $M_{n + 1}^\bullet \to M_ n^\bullet $ is termwise surjective, the complex $C^\bullet $ fitting into the left upper corner with terms
is quasi-isomorphic to $M_{n + 1}^\bullet $ (details omitted). Choose a quasi-isomorphism $K_{n + 1}^\bullet \to C^\bullet $ with $K_{n +1}^\bullet $ K-flat. Thus the lemma holds by induction. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)