Lemma 15.93.7. Let $A \to B$ and $A \to A'$ be ring maps. Let $B' = B \otimes _ A A'$ be the base change of $B$.

If $B \otimes _ A B \to B$ is flat, then $B' \otimes _{A'} B' \to B'$ is flat.

If $A \to B$ is weakly étale, then $A' \to B'$ is weakly étale.

## Comments (0)