Lemma 18.30.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\{ U_ i \to U\} $ be a covering of $\mathcal{C}$. Then the sequence

is exact.

Lemma 18.30.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\{ U_ i \to U\} $ be a covering of $\mathcal{C}$. Then the sequence

\[ \bigoplus j_{U_ i \times _ U U_ j!}\mathcal{O}_{U_ i \times _ U U_ j} \to \bigoplus j_{U_ i!}\mathcal{O}_{U_ i} \to j_!\mathcal{O}_ U \to 0 \]

is exact.

**Proof.**
For any $\mathcal{O}$-module $\mathcal{F}$ the functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(-, \mathcal{F})$ turns our sequence into the exact sequence $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_ i) \to \prod \mathcal{F}(U_ i \times _ U U_ j)$, see (18.19.2.1). The lemma follows from this and Homology, Lemma 12.5.8.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)