Lemma 12.5.8. Let \mathcal{A} be an abelian category. Let 0 \to M_1 \to M_2 \to M_3 \to 0 be a complex of \mathcal{A}.
M_1 \to M_2 \to M_3 \to 0 is exact if and only if
0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_3, N) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_2, N) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_1, N)is an exact sequence of abelian groups for all objects N of \mathcal{A}, and
0 \to M_1 \to M_2 \to M_3 is exact if and only if
0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_1) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_2) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_3)is an exact sequence of abelian groups for all objects N of \mathcal{A}.
Comments (2)
Comment #8105 by Et on
Comment #8216 by Stacks Project on
There are also: