Lemma 12.5.8. Let $\mathcal{A}$ be an abelian category. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be a complex of $\mathcal{A}$.

1. $M_1 \to M_2 \to M_3 \to 0$ is exact if and only if

$0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_3, N) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_2, N) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(M_1, N)$

is an exact sequence of abelian groups for all objects $N$ of $\mathcal{A}$, and

2. $0 \to M_1 \to M_2 \to M_3$ is exact if and only if

$0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_1) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_2) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(N, M_3)$

is an exact sequence of abelian groups for all objects $N$ of $\mathcal{A}$.

Proof. Omitted. Hint: See Algebra, Lemma 10.10.1. $\square$

Comment #8105 by Et on

Seems to be a typo on the second exact sequence

There are also:

• 9 comment(s) on Section 12.5: Abelian categories

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).