Definition 12.5.9. Let $\mathcal{A}$ be an abelian category. Let $i : A \to B$ and $q : B \to C$ be morphisms of $\mathcal{A}$ such that $0 \to A \to B \to C \to 0$ is a short exact sequence. We say the short exact sequence is split if there exist morphisms $j : C \to B$ and $p : B \to A$ such that $(B, i, j, p, q)$ is the direct sum of $A$ and $C$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: