Lemma 52.6.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let K \in D(\mathcal{O}). The rule which associates to U the set \mathcal{I}(U) of sections f \in \mathcal{O}(U) such that T(K|_ U, f) = 0 is a sheaf of ideals in \mathcal{O}.
Proof. We will use the results of Lemma 52.6.2 without further mention. If f \in \mathcal{I}(U), and g \in \mathcal{O}(U), then \mathcal{O}_{U, gf} is an \mathcal{O}_{U, f}-module hence R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_{U, gf}, K|_ U) = 0, hence gf \in \mathcal{I}(U). Suppose f, g \in \mathcal{O}(U). Then there is a short exact sequence
because f, g generate the unit ideal in \mathcal{O}(U)_{f + g}. This follows from Algebra, Lemma 10.24.2 and the easy fact that the last arrow is surjective. Because R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}( - , K|_ U) is an exact functor of triangulated categories the vanishing of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, f(f + g)}, K|_ U), R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, g(f + g)}, K|_ U), and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, gf(f + g)}, K|_ U), implies the vanishing of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, f + g}, K|_ U). We omit the verification of the sheaf condition. \square
Comments (0)
There are also: