Loading web-font TeX/Main/Regular

The Stacks project

Lemma 52.6.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let K \in D(\mathcal{O}). The rule which associates to U the set \mathcal{I}(U) of sections f \in \mathcal{O}(U) such that T(K|_ U, f) = 0 is a sheaf of ideals in \mathcal{O}.

Proof. We will use the results of Lemma 52.6.2 without further mention. If f \in \mathcal{I}(U), and g \in \mathcal{O}(U), then \mathcal{O}_{U, gf} is an \mathcal{O}_{U, f}-module hence R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_{U, gf}, K|_ U) = 0, hence gf \in \mathcal{I}(U). Suppose f, g \in \mathcal{O}(U). Then there is a short exact sequence

0 \to \mathcal{O}_{U, f + g} \to \mathcal{O}_{U, f(f + g)} \oplus \mathcal{O}_{U, g(f + g)} \to \mathcal{O}_{U, gf(f + g)} \to 0

because f, g generate the unit ideal in \mathcal{O}(U)_{f + g}. This follows from Algebra, Lemma 10.24.2 and the easy fact that the last arrow is surjective. Because R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}( - , K|_ U) is an exact functor of triangulated categories the vanishing of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, f(f + g)}, K|_ U), R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, g(f + g)}, K|_ U), and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, gf(f + g)}, K|_ U), implies the vanishing of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, f + g}, K|_ U). We omit the verification of the sheaf condition. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 52.6: Derived completion on a ringed site

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.