Lemma 52.6.17. Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}'$ be a homomorphism of sheaves of rings. Let $\mathcal{I} \subset \mathcal{O}$ be a finite type sheaf of ideals. If $\mathcal{O} \to \mathcal{O}'$ is flat and $\mathcal{O}/\mathcal{I} \cong \mathcal{O}'/\mathcal{I}\mathcal{O}'$, then the restriction functor $D(\mathcal{O}') \to D(\mathcal{O})$ induces an equivalence $D_{comp}(\mathcal{O}', \mathcal{I}\mathcal{O}') \to D_{comp}(\mathcal{O}, \mathcal{I})$.
Proof. Lemma 52.6.7 implies restriction $r : D(\mathcal{O}') \to D(\mathcal{O})$ sends $D_{comp}(\mathcal{O}', \mathcal{I}\mathcal{O}')$ into $D_{comp}(\mathcal{O}, \mathcal{I})$. We will construct a quasi-inverse $E \mapsto E'$.
Let $K \to \mathcal{O}$ be the morphism of $D(\mathcal{O})$ constructed in Lemma 52.6.11. Set $K' = K \otimes _\mathcal {O}^\mathbf {L} \mathcal{O}'$ in $D(\mathcal{O}')$. Then $K' \to \mathcal{O}'$ is a map in $D(\mathcal{O}')$ which satisfies the conclusions of Lemma 52.6.11 with respect to $\mathcal{I}' = \mathcal{I}\mathcal{O}'$. The map $K \to r(K')$ is a quasi-isomorphism by Lemma 52.6.16. Now, for $E \in D_{comp}(\mathcal{O}, \mathcal{I})$ we set
viewed as an object in $D(\mathcal{O}')$ using the $\mathcal{O}'$-module structure on $K'$. Since $E$ is derived complete we have $E = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(K, E)$, see proof of Proposition 52.6.12. On the other hand, since $K \to r(K')$ is an isomorphism in we see that there is an isomorphism $E \to r(E')$ in $D(\mathcal{O})$. To finish the proof we have to show that, if $E = r(M')$ for an object $M'$ of $D_{comp}(\mathcal{O}', \mathcal{I}')$, then $E' \cong M'$. To get a map we use
where the second arrow uses the map $K' \to \mathcal{O}'$. To see that this is an isomorphism, one shows that $r$ applied to this arrow is the same as the isomorphism $E \to r(E')$ above. Details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: