Lemma 9.25.1 (Artin-Schreier extensions). Let $L/K$ be a Galois extension of fields of characteristic $p > 0$ with Galois group $\mathbf{Z}/p\mathbf{Z}$. Then $L = K[z]$ with $z^ p - z \in K$.

**Proof.**
Let $\sigma $ be a generator of $\text{Gal}(L/K)$. Consider $\sigma : L \to L$ as a $K$-linear operator. Observe that $\sigma ^ p - 1 = 0$ as a linear operator. Applying linear independence of characters (Lemma 9.13.1), there cannot be a polynomial of degree $< p$ annihilating $\sigma $. We conclude that the minimal polynomial of $\sigma $ is $x^ p - 1 = (x - 1)^ p$. This implies that there exists $w \in L$ such that $(\sigma - 1)^{p - 1}(w) = y$ is nonzero. Then $\sigma (y) = y$, i.e., $y \in K$. Thus $z = y^{-1}(\sigma - 1)^{p - 2}(w)$ satisfies $\sigma (z) = z + 1$. Since $z \not\in K$ we have $L = K[z]$. Moreover since $\sigma (z^ p - z) = (z + 1)^ p - (z + 1) = z^ p - z$ we see that $z^ p - z \in K$ and the proof is complete.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: