9 Fields
-
Section 9.1: Introduction
-
Section 9.2: Basic definitions
-
Section 9.3: Examples of fields
-
Example 9.3.1: Rational numbers
-
Example 9.3.2: Prime fields
-
Example 9.3.3
-
Example 9.3.4: Quotient fields
-
Example 9.3.5: Field of rational functions
-
Example 9.3.6
-
Section 9.4: Vector spaces
-
Section 9.5: The characteristic of a field
-
Section 9.6: Field extensions
-
Section 9.7: Finite extensions
-
Definition 9.7.1
-
Example 9.7.2
-
Lemma 9.7.3
-
Example 9.7.4: Degree of a rational function field
-
Lemma 9.7.5
-
Example 9.7.6: Degree of a simple algebraic extension
-
Lemma 9.7.7: Multiplicativity
-
Definition 9.7.8
-
Section 9.8: Algebraic extensions
-
Section 9.9: Minimal polynomials
-
Section 9.10: Algebraic closure
-
Section 9.11: Relatively prime polynomials
-
Section 9.12: Separable extensions
-
Section 9.13: Linear independence of characters
-
Section 9.14: Purely inseparable extensions
-
Section 9.15: Normal extensions
-
Section 9.16: Splitting fields
-
Section 9.17: Roots of unity
-
Section 9.18: Finite fields
-
Section 9.19: Primitive elements
-
Lemma 9.19.1: Primitive element
-
Section 9.20: Trace and norm
-
Section 9.21: Galois theory
-
Section 9.22: Infinite Galois theory
-
Section 9.23: The complex numbers
-
Lemma 9.23.1: Fundamental theorem of algebra
-
Section 9.24: Kummer extensions
-
Section 9.25: Artin-Schreier extensions
-
Lemma 9.25.1: Artin-Schreier extensions
-
Section 9.26: Transcendence
-
Section 9.27: Linearly disjoint extensions
-
Section 9.28: Review