Proof.
Let $\mathcal{P}$ be the set of all minimal polynomials over $F$ of all elements of $E$. Set
\[ T = \{ \beta \in \overline{F} \mid P(\beta ) = 0\text{ for some }P \in \mathcal{P}\} \]
It is clear that if $E$ is normal over $F$, then $\sigma (E) = T$ for all $\sigma \in \mathop{\mathrm{Mor}}\nolimits _ F(E, \overline{F})$. Thus we see that (1) implies (2).
Conversely, assume (2). Pick $\beta \in T$. We can find a corresponding $\alpha \in E$ whose minimal polynomial $P \in \mathcal{P}$ annihilates $\beta $. Because $F(\alpha ) = F[x]/(P)$ we can find an element $\sigma _0 \in \mathop{\mathrm{Mor}}\nolimits _ F(F(\alpha ), \overline{F})$ mapping $\alpha $ to $\beta $. By Lemma 9.10.5 we can extend $\sigma _0$ to a $\sigma \in \mathop{\mathrm{Mor}}\nolimits _ F(E, \overline{F})$. Whence we see that $\beta $ is in the common image of all embeddings $\sigma : E \to \overline{F}$. It follows that $\sigma (E) = T$ for any $\sigma $. Fix a $\sigma $. Now let $P \in \mathcal{P}$. Then we can write
\[ P = (x - \beta _1) \ldots (x - \beta _ n) \]
for some $n$ and $\beta _ i \in \overline{F}$ by Lemma 9.10.2. Observe that $\beta _ i \in T$. Thus $\beta _ i = \sigma (\alpha _ i)$ for some $\alpha _ i \in E$. Thus $P = (x - \alpha _1) \ldots (x - \alpha _ n)$ splits completely over $E$. This finishes the proof.
$\square$
Comments (0)
There are also: