Lemma 9.12.13. Let $E/k$ be a field extension. Then the elements of $E$ separable over $k$ form a subextension of $E/k$.
Proof. Let $\alpha , \beta \in E$ be separable over $k$. Then $\beta $ is separable over $k(\alpha )$ by Lemma 9.12.3. Thus we can apply Lemma 9.12.12 to $k(\alpha , \beta )$ to see that $k(\alpha , \beta )$ is separable over $k$. $\square$
Comments (2)
Comment #9530 by Anonymous on
Comment #10266 by Stacks project on
There are also: