Lemma 9.12.4. Let $F$ be a field. An irreducible polynomial $P$ over $F$ is separable if and only if $P$ has pairwise distinct roots in an algebraic closure of $F$.

Proof. Suppose that $\alpha \in \overline{F}$ is a root of both $P$ and $P'$. Then $P = (x - \alpha )Q$ for some polynomial $Q$. Taking derivatives we obtain $P' = Q + (x - \alpha )Q'$. Thus $\alpha$ is a root of $Q$. Hence we see that if $P$ and $P'$ have a common root, then $P$ does not have pairwise distinct roots. Conversely, if $P$ has a repeated root, i.e., $(x - \alpha )^2$ divides $P$, then $\alpha$ is a root of both $P$ and $P'$. Combined with Lemma 9.11.2 this proves the lemma. $\square$

Comment #2963 by xd on

should be $\alpha\in\overline{F}$ in the first sentence of the proof?

There are also:

• 6 comment(s) on Section 9.12: Separable extensions

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).