Lemma 9.24.1 (Kummer extensions). Let $L/K$ be a Galois extension of fields whose Galois group is $\mathbf{Z}/n\mathbf{Z}$. Assume moreover that the characteristic of $K$ is prime to $n$ and that $K$ contains a primitive $n$th root of $1$. Then $L = K[z]$ with $z^ n \in K$.
9.24 Kummer extensions
Let $K$ be a field. Let $n \geq 2$ be an integer such that $K$ contains a primitive $n$th root of $1$. Let $a \in K$. Let $L$ be an extension of $K$ obtained by adjoining a root $b$ of the equation $x^ n = a$. Then $L/K$ is Galois. If $G = \text{Gal}(L/K)$ is the Galois group, then the map
is an injective homomorphism of groups. In particular, $G$ is cyclic of order dividing $n$ as a subgroup of the cyclic group $\mu _ n(K)$. Kummer theory gives a converse.
Proof. Let $\zeta \in K$ be a primitive $n$th root of $1$. Let $\sigma $ be a generator of $\text{Gal}(L/K)$. Consider $\sigma : L \to L$ as a $K$-linear operator. Note that $\sigma ^ n - 1 = 0$ as a linear operator. Applying linear independence of characters (Lemma 9.13.1), we see that there cannot be a polynomial over $K$ of degree $< n$ annihilating $\sigma $. Hence the minimal polynomial of $\sigma $ as a linear operator is $x^ n - 1$. Since $\zeta $ is a root of $x^ n - 1$ by linear algebra there is a $0 \neq z \in L$ such that $\sigma (z) = \zeta z$. This $z$ satisfies $z^ n \in K$ because $\sigma (z^ n) = (\zeta z)^ n = z^ n$. Moreover, we see that $z, \sigma (z), \ldots , \sigma ^{n - 1}(z) = z, \zeta z, \ldots \zeta ^{n - 1} z$ are pairwise distinct which guarantees that $z$ generates $L$ over $K$. Hence $L = K[z]$ as required. $\square$
Lemma 9.24.2. Let $K$ be a field with algebraic closure $\overline{K}$. Let $p$ be a prime different from the characteristic of $K$. Let $\zeta \in \overline{K}$ be a primitive $p$th root of $1$. Then $K(\zeta )/K$ is a Galois extension of degree dividing $p - 1$.
Proof. The polynomial $x^ p - 1$ splits completely over $K(\zeta )$ as its roots are $1, \zeta , \zeta ^2, \ldots , \zeta ^{p - 1}$. Hence $K(\zeta )/K$ is a splitting field and hence normal. The extension is separable as $x^ p - 1$ is a separable polynomial. Thus the extension is Galois. Any automorphism of $K(\zeta )$ over $K$ sends $\zeta $ to $\zeta ^ i$ for some $1 \leq i \leq p - 1$. Thus the Galois group is a subgroup of $(\mathbf{Z}/p\mathbf{Z})^*$. $\square$
Lemma 9.24.3. Let $K$ be a field. Let $L/K$ be a finite extension of degree $e$ which is generated by an element $\alpha $ with $a = \alpha ^ e \in K$. If every $e$th root of unity in $L$ is contained in $K$, then any sub extension $L/L'/K$ is generated by $\alpha ^ d$ for some $d | e$.
Proof. Observe that for $d | e$ the subfield $K(\alpha ^ d)$ has $[K(\alpha ^ d) : K] = e/d$ and $[L : K(\alpha ^ d)] = d$. Let $L/L'/K$ be a subextension. Say $d = [L : L']$. If $\alpha ^ d \in L'$, then we have $L' = K(\alpha ^ d)$ for degree reasons. Let $P \in L'[x]$ be the minimal polynomial of $\alpha $ over $L'$. Then $P$ divides $x^ e - a$ and $P$ has degree $d$. Let us write
in a splitting field of $x^ e - a$ over $L$. The $\zeta _ i$ are $e$th roots of unity and after renumbering we have
The constant term of $P$ is equal to
and is in $L' \subset L$. Since $\alpha \in L$ this implies that $\zeta = \prod _{i = 1, \ldots , d} \zeta _ i$ is in $L$ and hence in $K$ by our assumption. Thus $\alpha ^ d = \zeta ^{-1}c \in L'$ and we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (4)
Comment #4859 by Weixiao Lu on
Comment #5147 by Johan on
Comment #11043 by Pierre Deligne on
Comment #11207 by Stacks project on