Lemma 9.24.3. Let $K$ be a field. Let $L/K$ be a finite extension of degree $e$ which is generated by an element $\alpha $ with $a = \alpha ^ e \in K$. Then any sub extension $L/L'/K$ is generated by $\alpha ^ d$ for some $d | e$.

**Proof.**
Observe that for $d | e$ the subfield $K(\alpha ^ d)$ has $[K(\alpha ^ d) : K] = e/d$ and $[L : K(\alpha ^ d)] = d$ and that both extensions $K(\alpha ^ d)/K$ and $L/K(\alpha ^ d)$ are extensions as in the lemma.

We will use induction on the pair of integers $([L : L'], [L' : K])$ ordered lexicographically. Let $p$ be a prime number dividing $e$ and set $d = e/p$. If $K(\alpha ^ d)$ is contained in $L'$, then we win by induction, because then it suffices to prove the lemma for $L/L'/K(\alpha ^ d)$. If not, then $[L'(\alpha ^ d) : L'] = p$ and by induction hypothesis we have $L'(\alpha ^ d) = K(\alpha ^ i)$ for some $i | d$. If $i \not= 1$ we are done by induction. Thus we may assume that $[L : L'] = p$.

If $e$ is not a power of $p$, then we can do this trick again with a second prime number and we win. Thus we may assume $e$ is a power of $p$.

If the characteristic of $K$ is $p$ and $e$ is a $p$th power, then $L/K$ is purely inseparable. Hence $L/L'$ is purely inseparable of degree $p$ and hence $\alpha ^ p \in L'$. Thus $L' = K(\alpha ^ p)$ and this case is done.

The final case is where $e$ is a power of $p$, the characteristic of $K$ is not $p$, $L/L'$ is a degree $p$ extension, and $L = L'(\alpha ^{e/p})$. Claim: this can only happen if $e = p$ and $L' = K$. The claim finishes the proof.

First, we prove the claim when $K$ contains a primitive $p$th root of unity $\zeta $. In this case the degree $p$ extension $K(\alpha ^{e/p})/K$ is Galois with Galois group generated by the automorphism $\alpha ^{e/p} \mapsto \zeta \alpha ^{e/p}$. On the other hand, since $L$ is generated by $\alpha ^{e/p}$ and $L'$ we see that the map

is an isomorphism of $K$-algebras (look at dimensions). Thus $L$ has an automorphism $\sigma $ of order $p$ over $K$ sending $\alpha ^{e/p}$ to $\zeta \alpha ^{e/p}$. Then $\sigma (\alpha ) = \zeta ' \alpha $ for some $e$th root of unity $\zeta '$ (as $\alpha ^ e$ is in $K$). Then on the one hand $(\zeta ')^{e/p} = \zeta $ and on the other hand $\zeta '$ has to be a $p$th root of $1$ as $\sigma $ has order $p$. Thus $e/p = 1$ and the claim has been shown.

Finally, suppose that $K$ does not contain a primitive $p$th root of $1$. Choose a primitive $p$th root $\zeta $ in some algebraic closure $\overline{L}$ of $L$. Consider the diagram

By Lemma 9.24.2 the vertical extensions have degree prime to $p$. Hence $[L(\zeta ) : K(\zeta )]$ is divisible by $e$. On the other hand, $L(\zeta )$ is generated by $\alpha $ over $K(\zeta )$ and hence $[L(\zeta ) : K(\zeta )] \leq e$. Thus $[L(\zeta ) : K(\zeta )] = e$. Similarly we have $[K(\alpha ^{e/p}, \zeta ) : K(\zeta )] = p$ and $[L(\zeta ) : L'(\zeta )] = p$. Thus the fields $K(\zeta ), L'(\zeta ), L(\zeta )$ and the element $\alpha $ fall into the case discussed in the previous paragraph we conclude $e = p$ as desired. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #5407 by Yuzhou Gu on

Comment #5637 by Johan on

Comment #5961 by Yuzhou Gu on

Comment #6142 by Johan on

There are also: