Lemma 9.14.6. Let E/F be an algebraic field extension. There exists a unique subextension E/E_{sep}/F such that E_{sep}/F is separable and E/E_{sep} is purely inseparable.
Any algebraic field extension is uniquely a separable field extension followed by a purely inseparable one.
Proof. If the characteristic is zero we set E_{sep} = E. Assume the characteristic is p > 0. Let E_{sep} be the set of elements of E which are separable over F. This is a subextension by Lemma 9.12.13 and of course E_{sep} is separable over F. Given an \alpha in E there exists a p-power q such that \alpha ^ q is separable over F. Namely, q is that power of p such that the minimal polynomial of \alpha is of the form P(x^ q) with P separable algebraic, see Lemma 9.12.1. Hence E/E_{sep} is purely inseparable. Uniqueness is clear. \square
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #826 by Johan Commelin on
Comment #5488 by Théo de Oliveira Santos on
Comment #5697 by Johan on
There are also: