Lemma 9.16.5. Let $L/K$ be an algebraic normal extension.

1. If $L/M/K$ is a subextension with $M/K$ finite, then there exists a tower $L/M'/M/K$ with $M'/K$ finite and normal.

2. If $L/M'/M/K$ is a tower with $M/K$ normal and $M'/M$ finite, then there exists a tower $L/M''/M'/M/K$ with $M''/M$ finite and $M''/K$ normal.

Proof. Proof of (1). Let $M'$ be the smallest subextension of $L/K$ containing $M$ which is normal over $K$. By Lemma 9.16.3 this is the normal closure of $M/K$ and is finite over $K$.

Proof of (2). Let $\alpha _1, \ldots , \alpha _ n \in M'$ generate $M'$ over $M$. Let $P_1, \ldots , P_ n$ be the minimal polynomials of $\alpha _1, \ldots , \alpha _ n$ over $K$. Let $\alpha _{i, j}$ be the roots of $P_ i$ in $L$. Let $M'' = M(\alpha _{i, j})$. It follows from Lemma 9.15.6 (applied with the set of generators $M \cup \{ \alpha _{i, j}\}$) that $M''$ is normal over $K$. $\square$

There are also:

• 2 comment(s) on Section 9.16: Splitting fields

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).