Exercise 9.20.9. Let $L/K$ be an extension of degree $2$. Show that exactly one of the following happens

1. the discriminant is $0$, the characteristic of $K$ is $2$, and $L/K$ is purely inseparable obtained by taking a square root of an element of $K$,

2. the discriminant is $1$, the characteristic of $K$ is $2$, and $L/K$ is separable of degree $2$,

3. the discriminant is not a square, the characteristic of $K$ is not $2$, and $L$ is obtained from $K$ by taking the square root of the discriminant.

There are also:

• 1 comment(s) on Section 9.20: Trace and norm

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BIN. Beware of the difference between the letter 'O' and the digit '0'.