Lemma 9.21.6. Let $K$ be a field. Let $G$ be a finite group acting faithfully on $K$. Then the extension $K/K^ G$ is Galois, we have $[K : K^ G] = |G|$, and the Galois group of the extension is $G$.

**Proof.**
Given $\alpha \in K$ consider the orbit $G \cdot \alpha \subset K$ of $\alpha $ under the group action. Consider the polynomial

The key to the whole lemma is that this polynomial is invariant under the action of $G$ and hence has coefficients in $K^ G$. Namely, for $\tau \in G$ we have

because the map $\beta \mapsto \tau (\beta )$ is a permutation of the orbit $G \cdot \alpha $. Thus $P \in K^ G[x]$. Since also $P(\alpha ) = 0$ as $\alpha $ is an element of its orbit we conclude that the extension $K/K^ G$ is algebraic. Moreover, the minimal polynomial $Q$ of $\alpha $ over $K^ G$ divides the polynomial $P$ just constructed. Hence $Q$ is separable (by Lemma 9.12.4 for example) and we conclude that $K/K^ G$ is separable. Thus $K/K^ G$ is Galois. To finish the proof it suffices to show that $[K : K^ G] = |G|$ since then $G$ will be the Galois group by Lemma 9.21.2.

Pick finitely many elements $\alpha _ i \in K$, $i = 1, \ldots , n$ such that $\sigma (\alpha _ i) = \alpha _ i$ for $i = 1, \ldots , n$ implies $\sigma $ is the neutral element of $G$. Set

and observe that the action of $G$ on $K$ induces an action of $G$ on $L$. We will show that $L$ has degree $|G|$ over $K^ G$. This will finish the proof, since if $L \subset K$ is proper, then we can add an element $\alpha \in K$, $\alpha \not\in L$ to our list of elements $\alpha _1, \ldots , \alpha _ n$ without increasing $L$ which is absurd. This reduces us to the case that $K/K^ G$ is finite which is treated in the next paragraph.

Assume $K/K^ G$ is finite. By Lemma 9.19.1 we can find $\alpha \in K$ such that $K = K^ G(\alpha )$. By the construction in the first paragraph of this proof we see that $\alpha $ has degree at most $|G|$ over $K$. However, the degree cannot be less than $|G|$ as $G$ acts faithfully on $K^ G(\alpha ) = L$ by construction and the inequality of Lemma 9.15.9. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #5818 by Zhang on

Comment #5842 by Johan on

Comment #8509 by Et on

Comment #9114 by Stacks project on

There are also: