Example 9.3.5 (Field of rational functions). If $k$ is a field, then we can consider the field $k(x)$ of rational functions over $k$. This is the quotient field of the polynomial ring $k[x]$. In other words, it is the set of quotients $F/G$ for $F, G \in k[x]$, $G \not= 0$ with the obvious equivalence relation.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)