Lemma 9.7.3. Let $K/E/F$ be a tower of algebraic field extensions. If $K$ is finite over $F$, then $K$ is finite over $E$.
Proof. Direct from the definition. $\square$
Lemma 9.7.3. Let $K/E/F$ be a tower of algebraic field extensions. If $K$ is finite over $F$, then $K$ is finite over $E$.
Proof. Direct from the definition. $\square$
Comments (0)