Lemma 9.13.3. Let $K/F$ and $L/F$ be field extensions. Let $\sigma _1, \ldots , \sigma _ n : K \to L$ be pairwise distinct morphisms of $F$-extensions. Then $\sigma _1, \ldots , \sigma _ n$ are $L$-linearly independent: if $\lambda _1, \ldots , \lambda _ n \in L$ not all zero, then $\sum \lambda _ i\sigma _ i(\alpha ) \not= 0$ for some $\alpha \in K$.

**Proof.**
Apply Lemma 9.13.1 to the restrictions of $\sigma _ i$ to the groups of units.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: