Lemma 9.12.8. In Situation 9.12.7 the correspondence
is a bijection. Here the right hand side is the set of $n$-tuples $(\beta _1, \ldots , \beta _ n)$ of elements of $\overline{F}$ having the following property:
$\beta _1 \in \overline{F}$ is a root of $P_1$; let $\varphi _1 : K_1 \to \overline{F}$ be the homomorphism over $F$ sending $\alpha _1$ to $\beta _1$,
$\beta _2 \in \overline{F}$ is a root of $P_2^{\varphi _1}$; let $\varphi _2 : K_2 \to \overline{F}$ be the homomorphism extending $\varphi _1$ sending $\alpha _2$ to $\beta _2$,
and so on until,
$\beta _ n \in \overline{F}$ is a root of $P_ n^{\varphi _{n - 1}}$.
In each step the homorphism $\varphi _ i$ exists and is unique because $K_ i = K_{i - 1}[x]/(P_ i)$ and $\beta _ i$ is a root of $P_ i^{\varphi _{i - 1}}$.
Comments (2)
Comment #11057 by david on
Comment #11221 by Stacks project on
There are also: