Lemma 9.15.2. Let $K/E/F$ be a tower of algebraic field extensions. If $K$ is normal over $F$, then $K$ is normal over $E$.
Proof. Let $\alpha \in K$. Let $P$ be the minimal polynomial of $\alpha $ over $F$. Let $Q$ be the minimal polynomial of $\alpha $ over $E$. Then $Q$ divides $P$ in the polynomial ring $E[x]$, say $P = QR$. Hence, if $P$ splits completely over $K$, then so does $Q$. $\square$
Comments (0)
There are also: