Lemma 9.7.7 (Multiplicativity). Suppose given a tower of fields $F/E/k$. Then
Proof. Let $\alpha _1, \ldots , \alpha _ n \in F$ be an $E$-basis for $F$. Let $\beta _1, \ldots , \beta _ m \in E$ be a $k$-basis for $E$. Then the claim is that the set of products $\{ \alpha _ i \beta _ j, 1 \leq i \leq n, 1 \leq j \leq m\} $ is a $k$-basis for $F$. Indeed, let us check first that they span $F$ over $k$.
By assumption, the $\{ \alpha _ i\} $ span $F$ over $E$. So if $f \in F$, there are $a_ i \in E$ with
and, for each $i$, we can write $a_ i = \sum b_{ij} \beta _ j$ for some $b_{ij} \in k$. Putting these together, we find
proving that the $\{ \alpha _ i \beta _ j\} $ span $F$ over $k$.
Suppose now that there existed a nontrivial relation
for the $c_{ij} \in k$. In that case, we would have
and the inner terms lie in $E$ as the $\beta _ j$ do. Now $E$-linear independence of the $\{ \alpha _ i\} $ shows that the inner sums are all zero. Then $k$-linear independence of the $\{ \beta _ j\} $ shows that the $c_{ij}$ all vanish. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)