Lemma 22.4.2. Let $(A, d)$ be a differential graded algebra. The category $\text{Mod}_{(A, \text{d})}$ is abelian and has arbitrary limits and colimits.
Proof. Kernels and cokernels commute with taking underlying $A$-modules. Similarly for direct sums and colimits. In other words, these operations in $\text{Mod}_{(A, \text{d})}$ commute with the forgetful functor to the category of $A$-modules. This is not the case for products and limits. Namely, if $N_ i$, $i \in I$ is a family of differential graded $A$-modules, then the product $\prod N_ i$ in $\text{Mod}_{(A, \text{d})}$ is given by setting $(\prod N_ i)^ n = \prod N_ i^ n$ and $\prod N_ i = \bigoplus _ n (\prod N_ i)^ n$. Thus we see that the product does commute with the forgetful functor to the category of graded $A$-modules. A category with products and equalizers has limits, see Categories, Lemma 4.14.11. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: