Lemma 22.33.5. Let R be a ring. Let (A, \text{d}) and (B, \text{d}) be differential graded R-algebras. Let N be a differential graded (A, B)-bimodule. Then the functor
of Lemma 22.33.2 is a left adjoint to the functor
of Lemma 22.31.2.
Lemma 22.33.5. Let R be a ring. Let (A, \text{d}) and (B, \text{d}) be differential graded R-algebras. Let N be a differential graded (A, B)-bimodule. Then the functor
of Lemma 22.33.2 is a left adjoint to the functor
of Lemma 22.31.2.
Proof. This follows from Derived Categories, Lemma 13.30.1 and the fact that - \otimes _ A N and \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}^{dg}_{(B, \text{d})}}(N, -) are adjoint by Lemma 22.30.3. \square
Comments (0)