The Stacks project

Example 22.25.5 (Graded category of graded objects). Let $\mathcal{B}$ be an additive category. Recall that we have defined the category $\text{Gr}(\mathcal{B})$ of graded objects of $\mathcal{B}$ in Homology, Definition 12.16.1. In this example, we will construct a graded category $\text{Gr}^{gr}(\mathcal{B})$ over $R = \mathbf{Z}$ whose associated category $\text{Gr}^{gr}(\mathcal{B})^0$ recovers $\text{Gr}(\mathcal{B})$. As objects of $\text{Gr}^{gr}(\mathcal{B})$ we take graded objects of $\mathcal{B}$. Then, given graded objects $A = (A^ i)$ and $B = (B^ i)$ of $\mathcal{B}$ we set

\[ \mathop{\mathrm{Hom}}\nolimits _{\text{Gr}^{gr}(\mathcal{B})}(A, B) = \bigoplus \nolimits _{n \in \mathbf{Z}} \mathop{\mathrm{Hom}}\nolimits ^ n(A, B) \]

where the graded piece of degree $n$ is the abelian group of homogeneous maps of degree $n$ from $A$ to $B$. Explicitly we have

\[ \mathop{\mathrm{Hom}}\nolimits ^ n(A, B) = \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(A^{-q}, B^ p) \]

(observe reversal of indices and observe that we have a product here and not a direct sum). In other words, a degree $n$ morphism $f$ from $A$ to $B$ can be seen as a system $f = (f_{p, q})$ where $p, q \in \mathbf{Z}$, $p + q = n$ with $f_{p, q} : A^{-q} \to B^ p$ a morphism of $\mathcal{B}$. Given graded objects $A$, $B$, $C$ of $\mathcal{B}$ composition of morphisms in $\text{Gr}^{gr}(\mathcal{B})$ is defined via the maps

\[ \mathop{\mathrm{Hom}}\nolimits ^ m(B, C) \times \mathop{\mathrm{Hom}}\nolimits ^ n(A, B) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^{n + m}(A, C) \]

by simple composition $(g, f) \mapsto g \circ f$ of homogeneous maps of graded objects. In terms of components we have

\[ (g \circ f)_{p, r} = g_{p, q} \circ f_{-q, r} \]

where $q$ is such that $p + q = m$ and $-q + r = n$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09MM. Beware of the difference between the letter 'O' and the digit '0'.