Example 23.6.2 (Adjoining odd variable). Let $R$ be a ring. Let $(A, \gamma )$ be a strictly graded commutative graded $R$-algebra endowed with a divided power structure as in the definition above. Let $d > 0$ be an odd integer. In this setting we can adjoin a variable $T$ of degree $d$ to $A$. Namely, set
with grading given by $A\langle T \rangle _ m = A_ m \oplus A_{m - d}T$. We claim there is a unique divided power structure on $A\langle T \rangle $ compatible with the given divided power structure on $A$. Namely, we set
for $x \in A_{even, +}$ and $y \in A_{odd}$.
Comments (0)
There are also: