Definition 13.36.3. Let $\mathcal{D}$ be a triangulated category. Let $E$ be an object of $\mathcal{D}$.

We say $E$ is a

*classical generator*of $\mathcal{D}$ if the smallest strictly full, saturated, triangulated subcategory of $\mathcal{D}$ containing $E$ is equal to $\mathcal{D}$, in other words, if $\langle E \rangle = \mathcal{D}$.We say $E$ is a

*strong generator*of $\mathcal{D}$ if $\langle E \rangle _ n = \mathcal{D}$ for some $n \geq 1$.We say $E$ is a

*weak generator*or a*generator*of $\mathcal{D}$ if for any nonzero object $K$ of $\mathcal{D}$ there exists an integer $n$ and a nonzero map $E \to K[n]$.

## Comments (0)