Lemma 20.46.4. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. If $\mathcal{F}^\bullet $ is a strictly perfect complex of $\mathcal{O}_ Y$-modules, then $f^*\mathcal{F}^\bullet $ is a strictly perfect complex of $\mathcal{O}_ X$-modules.
Proof. The pullback of a finite free module is finite free. The functor $f^*$ is additive functor hence preserves direct summands. The lemma follows. $\square$
Comments (0)