Lemma 25.6.2. Let \mathcal{C} be a site with equalizers and fibre products. Let \mathcal{G} be a presheaf on \mathcal{C}. Let K be a hypercovering of \mathcal{G}. Let \mathcal{F} be a sheaf of abelian groups on \mathcal{C}. Then \check{H}^0(K, \mathcal{F}) = H^0(\mathcal{G}, \mathcal{F}).
Proof. This follows from the definition of H^0(\mathcal{G}, \mathcal{F}) and the fact that
\xymatrix{ F(K_1) \ar@<1ex>[r] \ar@<-1ex>[r] & F(K_0) \ar[r] & \mathcal{G} }
becomes an coequalizer diagram after sheafification. \square
Comments (0)