The Stacks project

25.6 Hypercoverings a la Verdier

The astute reader will have noticed that all we need in order to get the Čech to cohomology spectral sequence for a hypercovering of an object $X$, is the conclusion of Lemma 25.3.9. Therefore the following definition makes sense.

Definition 25.6.1. Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has equalizers and fibre products. Let $\mathcal{G}$ be a presheaf of sets. A hypercovering of $\mathcal{G}$ is a simplicial object $K$ of $\text{SR}(\mathcal{C})$ endowed with an augmentation $F(K) \to \mathcal{G}$ such that

  1. $F(K_0) \to \mathcal{G}$ becomes surjective after sheafification,

  2. $F(K_1) \to F(K_0) \times _\mathcal {G} F(K_0)$ becomes surjective after sheafification, and

  3. $F(K_{n + 1}) \longrightarrow F((\text{cosk}_ n \text{sk}_ n K)_{n + 1})$ for $n \geq 1$ becomes surjective after sheafification.

We say that a simplicial object $K$ of $\text{SR}(\mathcal{C})$ is a hypercovering if $K$ is a hypercovering of the final object $*$ of $\textit{PSh}(\mathcal{C})$.

The assumption that $\mathcal{C}$ has fibre products and equalizers guarantees that $\text{SR}(\mathcal{C})$ has fibre products and equalizers and $F$ commutes with these (Lemma 25.2.3) which suffices to define the coskeleton functors used (see Simplicial, Remark 14.19.11 and Categories, Lemma 4.18.2). If $\mathcal{C}$ is general, we can replace the condition (3) by the condition that $F(K_{n + 1}) \longrightarrow ((\text{cosk}_ n \text{sk}_ n F(K))_{n + 1})$ for $n \geq 1$ becomes surjective after sheafification and the results of this section remain valid.

Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$. In the previous section, we defined the Čech complex of $\mathcal{F}$ with respect to a simplicial object $K$ of $\text{SR}(\mathcal{C})$. Next, given a presheaf $\mathcal{G}$ we set

\[ H^0(\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{G}^\# , \mathcal{F}) = H^0(\mathcal{G}^\# , \mathcal{F}) \]

with notation as in Cohomology on Sites, Section 21.13. This is a left exact functor and its higher derived functors (briefly studied in Cohomology on Sites, Section 21.13) are denoted $H^ i(\mathcal{G}, \mathcal{F})$. We will show that given a hypercovering $K$ of $\mathcal{G}$, there is a Čech to cohomology spectral sequence converging to the cohomology $H^ i(\mathcal{G}, \mathcal{F})$. Note that if $\mathcal{G} = *$, then $H^ i(*, \mathcal{F}) = H^ i(\mathcal{C}, \mathcal{F})$ recovers the cohomology of $\mathcal{F}$ on the site $\mathcal{C}$.

Lemma 25.6.2. Let $\mathcal{C}$ be a site with equalizers and fibre products. Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$. Let $K$ be a hypercovering of $\mathcal{G}$. Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$. Then $\check{H}^0(K, \mathcal{F}) = H^0(\mathcal{G}, \mathcal{F})$.

Proof. This follows from the definition of $H^0(\mathcal{G}, \mathcal{F})$ and the fact that

\[ \xymatrix{ F(K_1) \ar@<1ex>[r] \ar@<-1ex>[r] & F(K_0) \ar[r] & \mathcal{G} } \]

becomes an coequalizer diagram after sheafification. $\square$

Lemma 25.6.3. Let $\mathcal{C}$ be a site with equalizers and fibre products. Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$. Let $K$ be a hypercovering of $\mathcal{G}$. Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$. Then

\[ \check{H}^ p(K, \mathcal{I}) = \left\{ \begin{matrix} H^0(\mathcal{G}, \mathcal{I}) & \text{if} & p = 0 \\ 0 & \text{if} & p > 0 \end{matrix} \right. \]

Proof. By (25.5.2.1) we have

\[ s(\mathcal{F}(K)) = \mathop{\mathrm{Hom}}\nolimits _{\textit{Ab}(\mathcal{C})}(s(\mathbf{Z}_{F(K)}^\# ), \mathcal{F}) \]

The complex $s(\mathbf{Z}_{F(K)}^\# )$ is quasi-isomorphic to $\mathbf{Z}_\mathcal {G}^\# $, see Lemma 25.4.4. We conclude that if $\mathcal{I}$ is an injective abelian sheaf, then the complex $s(\mathcal{I}(K))$ is acyclic except possibly in degree $0$. In other words, we have $\check{H}^ i(K, \mathcal{I}) = 0$ for $i > 0$. Combined with Lemma 25.6.2 the lemma is proved. $\square$

Lemma 25.6.4. Let $\mathcal{C}$ be a site with equalizers and fibre products. Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$. Let $K$ be a hypercovering of $\mathcal{G}$. Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$. There is a map

\[ s(\mathcal{F}(K)) \longrightarrow R\Gamma (\mathcal{G}, \mathcal{F}) \]

in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces a natural transformation

\[ \check{H}^ i(K, -) \longrightarrow H^ i(\mathcal{G}, -) \]

of functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover, there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with

\[ E_2^{p, q} = \check{H}^ p(K, \underline{H}^ q(\mathcal{F})) \]

converging to $H^{p + q}(\mathcal{G}, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$ and in the hypercovering $K$.

Proof. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $ in the category of abelian sheaves on $\mathcal{C}$. Consider the double complex $A^{\bullet , \bullet }$ with terms

\[ A^{p, q} = \mathcal{I}^ q(K_ p) \]

where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$ is the one coming from the differential $\mathcal{I}^ p \to \mathcal{I}^{p + 1}$ and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the one coming from the differential on the complex $s(\mathcal{I}^ p(K))$ associated to the cosimplicial abelian group $\mathcal{I}^ p(K)$ as explained above. We will use the two spectral sequences $({}'E_ r, {}'d_ r)$ and $({}''E_ r, {}''d_ r)$ associated to this double complex, see Homology, Section 12.25.

By Lemma 25.6.3 the complexes $s(\mathcal{I}^ p(K))$ are acyclic in positive degrees and have $H^0$ equal to $H^0(\mathcal{G}, \mathcal{I}^ p)$. Hence by Homology, Lemma 12.25.4 and its proof the spectral sequence $({}'E_ r, {}'d_ r)$ degenerates, and the natural map

\[ H^0(\mathcal{G}, \mathcal{I}^\bullet ) \longrightarrow \text{Tot}(A^{\bullet , \bullet }) \]

is a quasi-isomorphism of complexes of abelian groups. The map $s(\mathcal{F}(K)) \longrightarrow R\Gamma (\mathcal{G}, \mathcal{F})$ of the lemma is the composition of the natural map $s(\mathcal{F}(K)) \to \text{Tot}(A^{\bullet , \bullet })$ followed by the inverse of the displayed quasi-isomorphism above. This works because $H^0(\mathcal{G}, \mathcal{I}^\bullet )$ is a representative of $R\Gamma (\mathcal{G}, \mathcal{F})$.

Consider the spectral sequence $({}''E_ r, {}''d_ r)_{r \geq 0}$. By Homology, Lemma 12.25.1 we see that

\[ {}''E_2^{p, q} = H^ p_{II}(H^ q_ I(A^{\bullet , \bullet })) \]

In other words, we first take cohomology with respect to $d_1$ which gives the groups ${}''E_1^{p, q} = \underline{H}^ p(\mathcal{F})(K_ q)$. Hence it is indeed the case (by the description of the differential ${}''d_1$) that ${}''E_2^{p, q} = \check{H}^ p(K, \underline{H}^ q(\mathcal{F}))$. Since this spectral sequence converges to the cohomology of $\text{Tot}(A^{\bullet , \bullet })$ the proof is finished. $\square$

Lemma 25.6.5. Let $\mathcal{C}$ be a site with equalizers and fibre products. Let $K$ be a hypercovering. Let $\mathcal{F}$ be an abelian sheaf. There is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with

\[ E_2^{p, q} = \check{H}^ p(K, \underline{H}^ q(\mathcal{F})) \]

converging to the global cohomology groups $H^{p + q}(\mathcal{F})$.

Proof. This is a special case of Lemma 25.6.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09VT. Beware of the difference between the letter 'O' and the digit '0'.