Processing math: 0%

The Stacks project

25.7 Covering hypercoverings

Here are some ways to construct hypercoverings. We note that since the category \text{SR}(\mathcal{C}, X) has fibre products the category of simplicial objects of \text{SR}(\mathcal{C}, X) has fibre products as well, see Simplicial, Lemma 14.7.2.

Lemma 25.7.1. Let \mathcal{C} be a site with fibre products. Let X be an object of \mathcal{C}. Let K, L, M be simplicial objects of \text{SR}(\mathcal{C}, X). Let a : K \to L, b : M \to L be morphisms. Assume

  1. K is a hypercovering of X,

  2. the morphism M_0 \to L_0 is a covering, and

  3. for all n \geq 0 in the diagram

    \xymatrix{ M_{n + 1} \ar[dd] \ar[rr] \ar[rd]^\gamma & & (\text{cosk}_ n \text{sk}_ n M)_{n + 1} \ar[dd] \\ & L_{n + 1} \times _{(\text{cosk}_ n \text{sk}_ n L)_{n + 1}} (\text{cosk}_ n \text{sk}_ n M)_{n + 1} \ar[ld] \ar[ru] & \\ L_{n + 1} \ar[rr] & & (\text{cosk}_ n \text{sk}_ n L)_{n + 1} }

    the arrow \gamma is a covering.

Then the fibre product K \times _ L M is a hypercovering of X.

Proof. The morphism (K \times _ L M)_0 = K_0 \times _{L_0} M_0 \to K_0 is a base change of a covering by (2), hence a covering, see Lemma 25.3.2. And K_0 \to \{ X \to X\} is a covering by (1). Thus (K \times _ L M)_0 \to \{ X \to X\} is a covering by Lemma 25.3.2. Hence K \times _ L M satisfies the first condition of Definition 25.3.3.

We still have to check that

K_{n + 1} \times _{L_{n + 1}} M_{n + 1} = (K \times _ L M)_{n + 1} \longrightarrow (\text{cosk}_ n \text{sk}_ n (K \times _ L M))_{n + 1}

is a covering for all n \geq 0. We abbreviate as follows: A = (\text{cosk}_ n \text{sk}_ n K)_{n + 1}, B = (\text{cosk}_ n \text{sk}_ n L)_{n + 1}, and C = (\text{cosk}_ n \text{sk}_ n M)_{n + 1}. The functor \text{cosk}_ n \text{sk}_ n commutes with fibre products, see Simplicial, Lemma 14.19.13. Thus the right hand side above is equal to A \times _ B C. Consider the following commutative diagram

\xymatrix{ K_{n + 1} \times _{L_{n + 1}} M_{n + 1} \ar[r] \ar[d] & M_{n + 1} \ar[d] \ar[rd]_\gamma \ar[rrd] & & \\ K_{n + 1} \ar[r] \ar[rd] & L_{n + 1} \ar[rrd] & L_{n + 1} \times _ B C \ar[l] \ar[r] & C \ar[d] \\ & A \ar[rr] & & B }

This diagram shows that

K_{n + 1} \times _{L_{n + 1}} M_{n + 1} = (K_{n + 1} \times _ B C) \times _{(L_{n + 1} \times _ B C), \gamma } M_{n + 1}

Now, K_{n + 1} \times _ B C \to A \times _ B C is a base change of the covering K_{n + 1} \to A via the morphism A \times _ B C \to A, hence is a covering. By assumption (3) the morphism \gamma is a covering. Hence the morphism

(K_{n + 1} \times _ B C) \times _{(L_{n + 1} \times _ B C), \gamma } M_{n + 1} \longrightarrow K_{n + 1} \times _ B C

is a covering as a base change of a covering. The lemma follows as a composition of coverings is a covering. \square

Lemma 25.7.2. Let \mathcal{C} be a site with fibre products. Let X be an object of \mathcal{C}. If K, L are hypercoverings of X, then K \times L is a hypercovering of X.

Proof. You can either verify this directly, or use Lemma 25.7.1 above and check that L \to \{ X \to X\} has property (3). \square

Let \mathcal{C} be a site with fibre products. Let X be an object of \mathcal{C}. Since the category \text{SR}(\mathcal{C}, X) has coproducts and finite limits, it is permissible to speak about the objects U \times K and \mathop{\mathrm{Hom}}\nolimits (U, K) for certain simplicial sets U (for example those with finitely many nondegenerate simplices) and any simplicial object K of \text{SR}(\mathcal{C}, X). See Simplicial, Sections 14.13 and 14.17.

Lemma 25.7.3. Let \mathcal{C} be a site with fibre products. Let X be an object of \mathcal{C}. Let K be a hypercovering of X. Let k \geq 0 be an integer. Let u : Z \to K_ k be a covering in \text{SR}(\mathcal{C}, X). Then there exists a morphism of hypercoverings f: L \to K such that L_ k \to K_ k factors through u.

Proof. Denote Y = K_ k. Let C[k] be the cosimplicial set defined in Simplicial, Example 14.5.6. We will use the description of \mathop{\mathrm{Hom}}\nolimits (C[k], Y) and \mathop{\mathrm{Hom}}\nolimits (C[k], Z) given in Simplicial, Lemma 14.15.2. There is a canonical morphism K \to \mathop{\mathrm{Hom}}\nolimits (C[k], Y) corresponding to \text{id} : K_ k = Y \to Y. Consider the morphism \mathop{\mathrm{Hom}}\nolimits (C[k], Z) \to \mathop{\mathrm{Hom}}\nolimits (C[k], Y) which on degree n terms is the morphism

\prod \nolimits _{\alpha : [k] \to [n]} Z \longrightarrow \prod \nolimits _{\alpha : [k] \to [n]} Y

using the given morphism Z \to Y on each factor. Set

L = K \times _{\mathop{\mathrm{Hom}}\nolimits (C[k], Y)} \mathop{\mathrm{Hom}}\nolimits (C[k], Z).

The morphism L_ k \to K_ k sits in to a commutative diagram

\xymatrix{ L_ k \ar[r] \ar[d] & \prod _{\alpha : [k] \to [k]} Z \ar[r]^-{\text{pr}_{\text{id}_{[k]}}} \ar[d] & Z \ar[d] \\ K_ k \ar[r] & \prod _{\alpha : [k] \to [k]} Y \ar[r]^-{\text{pr}_{\text{id}_{[k]}}} & Y }

Since the composition of the two bottom arrows is the identity we conclude that we have the desired factorization.

We still have to show that L is a hypercovering of X. To see this we will use Lemma 25.7.1. Condition (1) is satisfied by assumption. For (2), the morphism

\mathop{\mathrm{Hom}}\nolimits (C[k], Z)_0 \to \mathop{\mathrm{Hom}}\nolimits (C[k], Y)_0

is a covering because it is isomorphic to Z \to Y as there is only one morphism [k] \to [0].

Let us consider condition (3) for n = 0. Then, since (\text{cosk}_0 T)_1 = T \times T (Simplicial, Example 14.19.1) and since \mathop{\mathrm{Hom}}\nolimits (C[k], Z)_1 = \prod _{\alpha : [k] \to [1]} Z we obtain the diagram

\xymatrix{ \prod \nolimits _{\alpha : [k] \to [1]} Z \ar[r] \ar[d] & Z \times Z \ar[d] \\ \prod \nolimits _{\alpha : [k] \to [1]} Y \ar[r] & Y \times Y }

with horizontal arrows corresponding to the projection onto the factors corresponding to the two nonsurjective \alpha . Thus the arrow \gamma is the morphism

\prod \nolimits _{\alpha : [k] \to [1]} Z \longrightarrow \prod \nolimits _{\alpha : [k] \to [1]\text{ not onto}} Z \times \prod \nolimits _{\alpha : [k] \to [1]\text{ onto}} Y

which is a product of coverings and hence a covering by Lemma 25.3.2.

Let us consider condition (3) for n > 0. We claim there is an injective map \tau : S' \to S of finite sets, such that for any object T of \text{SR}(\mathcal{C}, X) the morphism

25.7.3.1
\begin{equation} \label{hypercovering-equation-map} \mathop{\mathrm{Hom}}\nolimits (C[k], T)_{n + 1} \to (\text{cosk}_ n \text{sk}_ n \mathop{\mathrm{Hom}}\nolimits (C[k], T))_{n + 1} \end{equation}

is isomorphic to the projection \prod _{s \in S} T \to \prod _{s' \in S'} T functorially in T. If this is true, then we see, arguing as in the previous paragraph, that the arrow \gamma is the morphism

\prod \nolimits _{s \in S} Z \longrightarrow \prod \nolimits _{s \in S'} Z \times \prod \nolimits _{s \not\in \tau (S')} Y

which is a product of coverings and hence a covering by Lemma 25.3.2. By construction, we have \mathop{\mathrm{Hom}}\nolimits (C[k], T)_{n + 1} = \prod _{\alpha : [k] \to [n + 1]} T (see Simplicial, Lemma 14.15.2). Correspondingly we take S = \text{Map}([k], [n + 1]). On the other hand, Simplicial, Lemma 14.19.5, provides a description of points of (\text{cosk}_ n \text{sk}_ n \mathop{\mathrm{Hom}}\nolimits (C[k], T))_{n + 1} as sequences (f_0, \ldots , f_{n + 1}) of points of \mathop{\mathrm{Hom}}\nolimits (C[k], T)_ n satisfying d^ n_{j - 1} f_ i = d^ n_ i f_ j for 0 \leq i < j \leq n + 1. We can write f_ i = (f_{i, \alpha }) with f_{i, \alpha } a point of T and \alpha \in \text{Map}([k], [n]). The conditions translate into

f_{i, \delta ^ n_{j - 1} \circ \beta } = f_{j, \delta _ i^ n \circ \beta }

for any 0 \leq i < j \leq n + 1 and \beta : [k] \to [n - 1]. Thus we see that

S' = \{ 0, \ldots , n + 1\} \times \text{Map}([k], [n]) / \sim

where the equivalence relation is generated by the equivalences

(i, \delta ^ n_{j - 1} \circ \beta ) \sim (j, \delta _ i^ n \circ \beta )

for 0 \leq i < j \leq n + 1 and \beta : [k] \to [n - 1]. A computation (omitted) shows that the morphism (25.7.3.1) corresponds to the map S' \to S which sends (i, \alpha ) to \delta ^{n + 1}_ i \circ \alpha \in S. (It may be a comfort to the reader to see that this map is well defined by part (1) of Simplicial, Lemma 14.2.3.) To finish the proof it suffices to show that if \alpha , \alpha ' : [k] \to [n] and 0 \leq i < j \leq n + 1 are such that

\delta ^{n + 1}_ i \circ \alpha = \delta ^{n + 1}_ j \circ \alpha '

then we have \alpha = \delta ^ n_{j - 1} \circ \beta and \alpha ' = \delta _ i^ n \circ \beta for some \beta : [k] \to [n - 1]. This is easy to see and omitted. \square

Lemma 25.7.4. Let \mathcal{C} be a site with fibre products. Let X be an object of \mathcal{C}. Let K be a hypercovering of X. Let n \geq 0 be an integer. Let u : \mathcal{F} \to F(K_ n) be a morphism of presheaves which becomes surjective on sheafification. Then there exists a morphism of hypercoverings f: L \to K such that F(f_ n) : F(L_ n) \to F(K_ n) factors through u.

Proof. Write K_ n = \{ U_ i \to X\} _{i \in I}. Thus the map u is a morphism of presheaves of sets u : \mathcal{F} \to \amalg h_{u_ i}. The assumption on u means that for every i \in I there exists a covering \{ U_{ij} \to U_ i\} _{j \in I_ i} of the site \mathcal{C} and a morphism of presheaves t_{ij} : h_{U_{ij}} \to \mathcal{F} such that u \circ t_{ij} is the map h_{U_{ij}} \to h_{U_ i} coming from the morphism U_{ij} \to U_ i. Set J = \amalg _{i \in I} I_ i, and let \alpha : J \to I be the obvious map. For j \in J denote V_ j = U_{\alpha (j)j}. Set Z = \{ V_ j \to X\} _{j \in J}. Finally, consider the morphism u' : Z \to K_ n given by \alpha : J \to I and the morphisms V_ j = U_{\alpha (j)j} \to U_{\alpha (j)} above. Clearly, this is a covering in the category \text{SR}(\mathcal{C}, X), and by construction F(u') : F(Z) \to F(K_ n) factors through u. Thus the result follows from Lemma 25.7.3 above. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.