Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 14.2.3. The morphisms $\delta ^ n_ j$ and $\sigma ^ n_ j$ satisfy the following relations.

  1. If $0 \leq i < j \leq n + 1$, then $\delta ^{n + 1}_ j \circ \delta ^ n_ i = \delta ^{n + 1}_ i \circ \delta ^ n_{j - 1}$. In other words the diagram

    \[ \xymatrix{ & [n] \ar[rd]^{\delta ^{n + 1}_ j} & \\ [n - 1] \ar[ru]^{\delta ^ n_ i} \ar[rd]_{\delta ^ n_{j - 1}} & & [n + 1] \\ & [n] \ar[ru]_{\delta ^{n + 1}_ i} & } \]

    commutes.

  2. If $0 \leq i < j \leq n - 1$, then $\sigma ^{n - 1}_ j \circ \delta ^ n_ i = \delta ^{n - 1}_ i \circ \sigma ^{n - 2}_{j - 1}$. In other words the diagram

    \[ \xymatrix{ & [n] \ar[rd]^{\sigma ^{n - 1}_ j} & \\ [n - 1] \ar[ru]^{\delta ^ n_ i} \ar[rd]_{\sigma ^{n - 2}_{j - 1}} & & [n - 1] \\ & [n - 2] \ar[ru]_{\delta ^{n - 1}_ i} & } \]

    commutes.

  3. If $0 \leq j \leq n - 1$, then $\sigma ^{n - 1}_ j \circ \delta ^ n_ j = \text{id}_{[n - 1]}$ and $\sigma ^{n - 1}_ j \circ \delta ^ n_{j + 1} = \text{id}_{[n - 1]}$. In other words the diagram

    \[ \xymatrix{ & [n] \ar[rd]^{\sigma ^{n - 1}_ j} & \\ [n - 1] \ar[ru]^{\delta ^ n_ j} \ar[rd]_{\delta ^ n_{j + 1}} \ar[rr]^{\text{id}_{[n - 1]}} & & [n - 1] \\ & [n] \ar[ru]_{\sigma ^{n - 1}_ j} & } \]

    commutes.

  4. If $0 < j + 1 < i \leq n$, then $\sigma ^{n - 1}_ j \circ \delta ^ n_ i = \delta ^{n - 1}_{i - 1} \circ \sigma ^{n - 2}_ j$. In other words the diagram

    \[ \xymatrix{ & [n] \ar[rd]^{\sigma ^{n - 1}_ j} & \\ [n - 1] \ar[ru]^{\delta ^ n_ i} \ar[rd]_{\sigma ^{n - 2}_ j} & & [n - 1] \\ & [n - 2] \ar[ru]_{\delta ^{n - 1}_{i - 1}} & } \]

    commutes.

  5. If $0 \leq i \leq j \leq n - 1$, then $\sigma ^{n - 1}_ j \circ \sigma ^ n_ i = \sigma ^{n - 1}_ i \circ \sigma ^ n_{j + 1}$. In other words the diagram

    \[ \xymatrix{ & [n] \ar[rd]^{\sigma ^{n - 1}_ j} & \\ [n + 1] \ar[ru]^{\sigma ^ n_ i} \ar[rd]_{\sigma ^ n_{j + 1}} & & [n - 1] \\ & [n] \ar[ru]_{\sigma ^{n - 1}_ i} & } \]

    commutes.

Proof. Omitted. $\square$


Comments (0)

There are also:

  • 5 comment(s) on Section 14.2: The category of finite ordered sets

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.