The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

14.17 Hom from simplicial sets into simplicial objects

Motivated by the discussion on internal hom we define what should be the simplicial object classifying morphisms from a simplicial set into a given simplicial object of the category $\mathcal{C}$.

Definition 14.17.1. Let $\mathcal{C}$ be a category such that the coproduct of any two objects exists. Let $U$ be a simplicial set, with $U_ n$ finite nonempty for all $n \geq 0$. Let $V$ be a simplicial object of $\mathcal{C}$. We denote $\mathop{\mathrm{Hom}}\nolimits (U, V)$ any simplicial object of $\mathcal{C}$ such that

\[ \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(W, \mathop{\mathrm{Hom}}\nolimits (U, V)) = \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(W \times U, V) \]

functorially in the simplicial object $W$ of $\mathcal{C}$.

Of course $\mathop{\mathrm{Hom}}\nolimits (U, V)$ need not exist. Also, by the discussion in Section 14.16 we expect that if it does exist, then $\mathop{\mathrm{Hom}}\nolimits (U, V)_ n = \mathop{\mathrm{Hom}}\nolimits (U \times \Delta [n], V)_0$. We do not use the italic notation for these Hom objects since $\mathop{\mathrm{Hom}}\nolimits (U, V)$ is not an internal hom.

Lemma 14.17.2. Assume the category $\mathcal{C}$ has coproducts of any two objects and countable limits. Let $U$ be a simplicial set, with $U_ n$ finite nonempty for all $n \geq 0$. Let $V$ be a simplicial object of $\mathcal{C}$. Then the functor

\begin{eqnarray*} \mathcal{C}^{opp} & \longrightarrow & \textit{Sets} \\ X & \longmapsto & \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(X \times U, V) \end{eqnarray*}

is representable.

Proof. A morphism from $X \times U$ into $V$ is given by a collection of morphisms $f_ u : X \to V_ n$ with $n \geq 0$ and $u \in U_ n$. And such a collection actually defines a morphism if and only if for all $\varphi : [m] \to [n]$ all the diagrams

\[ \xymatrix{ X \ar[r]^{f_ u} \ar[d]_{\text{id}_ X} & V_ n \ar[d]^{V(\varphi )} \\ X \ar[r]^{f_{U(\varphi )(u)}} & V_ m } \]

commute. Thus it is natural to introduce a category $\mathcal{U}$ and a functor $\mathcal{V} : \mathcal{U}^{opp} \to \mathcal{C}$ as follows:

  1. The set of objects of $\mathcal{U}$ is $\coprod _{n \geq 0} U_ n$,

  2. a morphism from $u' \in U_ m$ to $u \in U_ n$ is a $\varphi : [m] \to [n]$ such that $U(\varphi )(u) = u'$

  3. for $u \in U_ n$ we set $\mathcal{V}(u) = V_ n$, and

  4. for $\varphi : [m] \to [n]$ such that $U(\varphi )(u) = u'$ we set $\mathcal{V}(\varphi ) = V(\varphi ) : V_ n \to V_ m$.

At this point it is clear that our functor is nothing but the functor defining

\[ \mathop{\mathrm{lim}}\nolimits _{\mathcal{U}^{opp}} \mathcal{V} \]

Thus if $\mathcal{C}$ has countable limits then this limit and hence an object representing the functor of the lemma exist. $\square$

Lemma 14.17.3. Assume the category $\mathcal{C}$ has coproducts of any two objects and finite limits. Let $U$ be a simplicial set, with $U_ n$ finite nonempty for all $n \geq 0$. Assume that all $n$-simplices of $U$ are degenerate for all $n \gg 0$. Let $V$ be a simplicial object of $\mathcal{C}$. Then the functor

\begin{eqnarray*} \mathcal{C}^{opp} & \longrightarrow & \textit{Sets} \\ X & \longmapsto & \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(X \times U, V) \end{eqnarray*}

is representable.

Proof. We have to show that the category $\mathcal{U}$ described in the proof of Lemma 14.17.2 has a finite subcategory $\mathcal{U}'$ such that the limit of $\mathcal{V}$ over $\mathcal{U}'$ is the same as the limit of $\mathcal{V}$ over $\mathcal{U}$. We will use Categories, Lemma 4.17.4. For $m > 0$ let $\mathcal{U}_{\leq m}$ denote the full subcategory with objects $\coprod _{0 \leq n \leq m} U_ m$. Let $m_0$ be an integer such that every $n$-simplex of the simplicial set $U$ is degenerate if $n > m_0$. For any $m \geq m_0$ large enough, the subcategory $\mathcal{U}_{\leq m}$ satisfies property (1) of Categories, Definition 4.17.3.

Suppose that $u \in U_ n$ and $u' \in U_{n'}$ with $n, n' \leq m_0$ and suppose that $\varphi : [k] \to [n]$, $\varphi ' : [k] \to [n']$ are morphisms such that $U(\varphi )(u) = U(\varphi ')(u')$. A simple combinatorial argument shows that if $k > 2m_0$, then there exists an index $0 \leq i \leq 2m_0$ such that $\varphi (i) =\varphi (i + 1)$ and $\varphi '(i) = \varphi '(i + 1)$. (The pigeon hole principle would tell you this works if $k > m_0^2$ which is good enough for the argument below anyways.) Hence, if $k > 2m_0$, we may write $\varphi = \psi \circ \sigma ^{k - 1}_ i$ and $\varphi ' = \psi ' \circ \sigma ^{k - 1}_ i$ for some $\psi : [k - 1] \to [n]$ and some $\psi ' : [k - 1] \to [n']$. Since $s^{k - 1}_ i : U_{k - 1} \to U_ k$ is injective, see Lemma 14.3.6, we conclude that $U(\psi )(u) = U(\psi ')(u')$ also. Continuing in this fashion we conclude that given morphisms $u \to z$ and $u' \to z$ of $\mathcal{U}$ with $u, u' \in \mathcal{U}_{\leq m_0}$, there exists a commutative diagram

\[ \xymatrix{ u \ar[rd] \ar[rrd] & & \\ & a \ar[r] & z \\ u' \ar[ru] \ar[rru] } \]

with $a \in \mathcal{U}_{\leq 2m_0}$.

It is easy to deduce from this that the finite subcategory $\mathcal{U}_{\leq 2m_0}$ works. Namely, suppose given $x' \in U_ n$ and $x'' \in U_{n'}$ with $n, n' \leq 2m_0$ as well as morphisms $x' \to x$ and $x'' \to x$ of $\mathcal{U}$ with the same target. By our choice of $m_0$ we can find objects $u, u'$ of $\mathcal{U}_{\leq m_0}$ and morphisms $u \to x'$, $u' \to x''$. By the above we can find $a \in \mathcal{U}_{\leq 2m_0}$ and morphisms $u \to a$, $u' \to a$ such that

\[ \xymatrix{ u \ar[rd] \ar[rrd] \ar[r] & x' \ar[rd] & \\ & a \ar[r] & x \\ u' \ar[ru] \ar[rru] \ar[r] & x'' \ar[ru] & } \]

is commutative. Turning this diagram 90 degrees clockwise we get the desired diagram as in (2) of Categories, Definition 4.17.3. $\square$

Lemma 14.17.4. Assume the category $\mathcal{C}$ has coproducts of any two objects and finite limits. Let $U$ be a simplicial set, with $U_ n$ finite nonempty for all $n \geq 0$. Assume that all $n$-simplices of $U$ are degenerate for all $n \gg 0$. Let $V$ be a simplicial object of $\mathcal{C}$. Then $\mathop{\mathrm{Hom}}\nolimits (U, V)$ exists, moreover we have the expected equalities

\[ \mathop{\mathrm{Hom}}\nolimits (U, V)_ n = \mathop{\mathrm{Hom}}\nolimits (U \times \Delta [n], V)_0. \]

Proof. We construct this simplicial object as follows. For $n \geq 0$ let $\mathop{\mathrm{Hom}}\nolimits (U, V)_ n$ denote the object of $\mathcal{C}$ representing the functor

\[ X \longmapsto \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(X \times U \times \Delta [n], V) \]

This exists by Lemma 14.17.3 because $U \times \Delta [n]$ is a simplicial set with finite sets of simplices and no nondegenerate simplices in high enough degree, see Lemma 14.11.5. For $\varphi : [m] \to [n]$ we obtain an induced map of simplicial sets $\varphi : \Delta [m] \to \Delta [n]$. Hence we obtain a morphism $X \times U \times \Delta [m] \to X \times U \times \Delta [n]$ functorial in $X$, and hence a transformation of functors, which in turn gives

\[ \mathop{\mathrm{Hom}}\nolimits (U, V)(\varphi ) : \mathop{\mathrm{Hom}}\nolimits (U, V)_ n \longrightarrow \mathop{\mathrm{Hom}}\nolimits (U, V)_ m. \]

Clearly this defines a contravariant functor $\mathop{\mathrm{Hom}}\nolimits (U, V)$ from $\Delta $ into the category $\mathcal{C}$. In other words, we have a simplicial object of $\mathcal{C}$.

We have to show that $\mathop{\mathrm{Hom}}\nolimits (U, V)$ satisfies the desired universal property

\[ \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(W, \mathop{\mathrm{Hom}}\nolimits (U, V)) = \mathop{Mor}\nolimits _{\text{Simp}(\mathcal{C})}(W \times U, V) \]

To see this, let $f : W \to \mathop{\mathrm{Hom}}\nolimits (U, V)$ be given. We want to construct the element $f' : W \times U \to V$ of the right hand side. By construction, each $f_ n : W_ n \to \mathop{\mathrm{Hom}}\nolimits (U, V)_ n$ corresponds to a morphism $f_ n : W_ n \times U \times \Delta [n] \to V$. Further, for every morphism $\varphi : [m] \to [n]$ the diagram

\[ \xymatrix{ W_ n \times U \times \Delta [m] \ar[rr]_{W(\varphi )\times \text{id} \times \text{id}} \ar[d]_{\text{id} \times \text{id} \times \varphi } & & W_ m \times U \times \Delta [m] \ar[d]^{f_ m} \\ W_ n \times U \times \Delta [n] \ar[rr]^{f_ n} & & V } \]

is commutative. For $\psi : [n] \to [k]$ in $(\Delta [n])_ k$ we denote $(f_ n)_{k, \psi } : W_ n \times U_ k \to V_ k$ the component of $(f_ n)_ k$ corresponding to the element $\psi $. We define $f'_ n : W_ n \times U_ n \to V_ n$ as $f'_ n = (f_ n)_{n, \text{id}}$, in other words, as the restriction of $(f_ n)_ n : W_ n \times U_ n \times (\Delta [n])_ n \to V_ n$ to $W_ n \times U_ n \times \text{id}_{[n]}$. To see that the collection $(f'_ n)$ defines a morphism of simplicial objects, we have to show for any $\varphi : [m] \to [n]$ that $V(\varphi ) \circ f'_ n = f'_ m \circ W(\varphi ) \times U(\varphi )$. The commutative diagram above says that $(f_ n)_{m, \varphi } : W_ n \times U_ m \to V_ m$ is equal to $(f_ m)_{m, \text{id}} \circ W(\varphi ) : W_ n \times U_ m \to V_ m$. But then the fact that $f_ n$ is a morphism of simplicial objects implies that the diagram

\[ \xymatrix{ W_ n \times U_ n \times (\Delta [n])_ n \ar[r]_-{(f_ n)_ n} \ar[d]_{\text{id} \times U(\varphi ) \times \varphi } & V_ n \ar[d]^{V(\varphi )} \\ W_ n \times U_ m \times (\Delta [n])_ m \ar[r]^-{(f_ n)_ m} & V_ m } \]

is commutative. And this implies that $(f_ n)_{m, \varphi } \circ U(\varphi )$ is equal to $V(\varphi ) \circ (f_ n)_{n, \text{id}}$. Altogether we obtain $ V(\varphi ) \circ (f_ n)_{n, \text{id}} = (f_ n)_{m, \varphi } \circ U(\varphi ) = (f_ m)_{m, \text{id}} \circ W(\varphi )\circ U(\varphi ) = (f_ m)_{m, \text{id}} \circ W(\varphi )\times U(\varphi ) $ as desired.

On the other hand, given a morphism $f' : W \times U \to V$ we define a morphism $f : W \to \mathop{\mathrm{Hom}}\nolimits (U, V)$ as follows. By Lemma 14.13.4 the morphisms $\text{id} : W_ n \to W_ n$ corresponds to a unique morphism $c_ n : W_ n \times \Delta [n] \to W$. Hence we can consider the composition

\[ W_ n \times \Delta [n] \times U \xrightarrow {c_ n} W \times U \xrightarrow {f'} V. \]

By construction this corresponds to a unique morphism $f_ n : W_ n \to \mathop{\mathrm{Hom}}\nolimits (U, V)_ n$. We leave it to the reader to see that these define a morphism of simplicial sets as desired.

We also leave it to the reader to see that $f \mapsto f'$ and $f' \mapsto f$ are mutually inverse operations. $\square$

Lemma 14.17.5. Assume the category $\mathcal{C}$ has coproducts of any two objects and finite limits. Let $a : U \to V$, $b : U \to W$ be morphisms of simplicial sets. Assume $U_ n, V_ n, W_ n$ finite nonempty for all $n \geq 0$. Assume that all $n$-simplices of $U, V, W$ are degenerate for all $n \gg 0$. Let $T$ be a simplicial object of $\mathcal{C}$. Then

\[ \mathop{\mathrm{Hom}}\nolimits (V, T) \times _{\mathop{\mathrm{Hom}}\nolimits (U, T)} \mathop{\mathrm{Hom}}\nolimits (W, T) = \mathop{\mathrm{Hom}}\nolimits (V \amalg _ U W, T) \]

In other words, the fibre product on the left hand side is represented by the Hom object on the right hand side.

Proof. By Lemma 14.17.4 all the required $\mathop{\mathrm{Hom}}\nolimits $ objects exist and satisfy the correct functorial properties. Now we can identify the $n$th term on the left hand side as the object representing the functor that associates to $X$ the first set of the following sequence of functorial equalities

\begin{align*} & \mathop{Mor}\nolimits (X \times \Delta [n], \mathop{\mathrm{Hom}}\nolimits (V, T) \times _{\mathop{\mathrm{Hom}}\nolimits (U, T)} \mathop{\mathrm{Hom}}\nolimits (W, T)) \\ & = \mathop{Mor}\nolimits (X \times \Delta [n], \mathop{\mathrm{Hom}}\nolimits (V, T)) \times _{\mathop{Mor}\nolimits (X \times \Delta [n], \mathop{\mathrm{Hom}}\nolimits (U, T))} \mathop{Mor}\nolimits (X \times \Delta [n], \mathop{\mathrm{Hom}}\nolimits (W, T)) \\ & = \mathop{Mor}\nolimits (X \times \Delta [n] \times V, T) \times _{\mathop{Mor}\nolimits (X \times \Delta [n] \times U, T)} \mathop{Mor}\nolimits (X \times \Delta [n] \times W, T) \\ & = \mathop{Mor}\nolimits (X \times \Delta [n] \times (V \amalg _ U W), T)) \end{align*}

Here we have used the fact that

\[ (X \times \Delta [n] \times V) \times _{X \times \Delta [n] \times U} (X \times \Delta [n] \times W) = X \times \Delta [n] \times (V \amalg _ U W) \]

which is easy to verify term by term. The result of the lemma follows as the last term in the displayed sequence of equalities corresponds to $\mathop{\mathrm{Hom}}\nolimits (V \amalg _ U W, T)_ n$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 017H. Beware of the difference between the letter 'O' and the digit '0'.