The Stacks project

Remark 14.19.11. We do not need all finite limits in order to be able to define the coskeleton functors. Here are some remarks

  1. We have seen in Example 14.19.1 that if $\mathcal{C}$ has products of pairs of objects then $\text{cosk}_0$ exists.

  2. For $k > 0$ the functor $\text{cosk}_ k$ exists if $\mathcal{C}$ has finite connected limits.

This is clear from the inductive procedure of constructing coskeleta (Remarks 14.19.8 and 14.19.9) but it also follows from the fact that the categories $(\Delta /[n])_{\leq k}$ for $k \geq 1$ and $n \geq k + 1$ used in Lemma 14.19.2 are connected. Observe that we do not need the categories for $n \leq k$ by Lemma 14.19.3 or Lemma 14.19.4. (As $k$ gets higher the categories $(\Delta /[n])_{\leq k}$ for $k \geq 1$ and $n \geq k + 1$ are more and more connected in a topological sense.)


Comments (0)

There are also:

  • 4 comment(s) on Section 14.19: Coskeleton functors

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09VS. Beware of the difference between the letter 'O' and the digit '0'.