Lemma 14.19.12. Let $U$, $V$ be $n$-truncated simplicial objects of a category $\mathcal{C}$. Then

$\text{cosk}_ n (U \times V) = \text{cosk}_ nU \times \text{cosk}_ nV$

whenever the left and right hand sides exist.

Proof. Let $W$ be a simplicial object. We have

\begin{eqnarray*} \mathop{\mathrm{Mor}}\nolimits (W, \text{cosk}_ n (U \times V)) & = & \mathop{\mathrm{Mor}}\nolimits (\text{sk}_ n W, U \times V) \\ & = & \mathop{\mathrm{Mor}}\nolimits (\text{sk}_ n W, U) \times \mathop{\mathrm{Mor}}\nolimits (\text{sk}_ nW, V) \\ & = & \mathop{\mathrm{Mor}}\nolimits (W, \text{cosk}_ n U) \times \mathop{\mathrm{Mor}}\nolimits (W, \text{cosk}_ n V) \\ & = & \mathop{\mathrm{Mor}}\nolimits (W, \text{cosk}_ n U \times \text{cosk}_ n V) \end{eqnarray*}

The lemma follows. $\square$

There are also:

• 4 comment(s) on Section 14.19: Coskeleton functors

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).