Lemma 14.19.10. Let $\mathcal{C}$ be a category which has finite limits.

For every $n$ the functor $\text{sk}_ n : \text{Simp}(\mathcal{C}) \to \text{Simp}_ n(\mathcal{C})$ has a right adjoint $\text{cosk}_ n$.

For every $n' \geq n$ the functor $\text{sk}_ n : \text{Simp}_{n'}(\mathcal{C}) \to \text{Simp}_ n(\mathcal{C})$ has a right adjoint, namely $\text{sk}_{n'}\text{cosk}_ n$.

For every $m \geq n \geq 0$ and every $n$-truncated simplicial object $U$ of $\mathcal{C}$ we have $\text{cosk}_ m \text{sk}_ m \text{cosk}_ n U = \text{cosk}_ n U$.

If $U$ is a simplicial object of $\mathcal{C}$ such that the canonical map $U \to \text{cosk}_ n \text{sk}_ nU$ is an isomorphism for some $n \geq 0$, then the canonical map $U \to \text{cosk}_ m \text{sk}_ mU$ is an isomorphism for all $m \geq n$.

## Comments (1)

Comment #1023 by correction_bot on