Lemma 15.11.16. Let $(A, I)$ be a henselian pair. Let $\mathfrak p \subset A$ be a prime ideal. Then $V(\mathfrak p + I)$ is connected.
Proof. By Lemma 15.11.8 we see that $(A/\mathfrak p, I + \mathfrak p/\mathfrak p)$ is a henselian pair. Thus it suffices to prove: If $(A, I)$ is a henselian pair and $A$ is a domain, then $\mathop{\mathrm{Spec}}(A/I) = V(I)$ is connected. If not, then $A/I$ has a nontrivial idempotent by Algebra, Lemma 10.21.4. By Lemma 15.11.6 this would imply $A$ has a nontrivial idempotent. This is a contradiction. $\square$
Comments (2)
Comment #2172 by JuanPablo on
Comment #2201 by Johan on
There are also: