Lemma 5.23.3. Let $f : X \to Y$ be a spectral map of spectral spaces. Then

$f$ is continuous in the constructible topology,

the fibres of $f$ are quasi-compact, and

the image is closed in the constructible topology.

Lemma 5.23.3. Let $f : X \to Y$ be a spectral map of spectral spaces. Then

$f$ is continuous in the constructible topology,

the fibres of $f$ are quasi-compact, and

the image is closed in the constructible topology.

**Proof.**
Let $X'$ and $Y'$ denote $X$ and $Y$ endowed with the constructible topology which are quasi-compact Hausdorff spaces by Lemma 5.23.2. Part (1) says $X' \to Y'$ is continuous and follows immediately from the definitions. Part (3) follows as $f(X')$ is a quasi-compact subset of the Hausdorff space $Y'$, see Lemma 5.12.4. We have a commutative diagram

\[ \xymatrix{ X' \ar[r] \ar[d] & X \ar[d] \\ Y' \ar[r] & Y } \]

of continuous maps of topological spaces. Since $Y'$ is Hausdorff we see that the fibres $X'_ y$ are closed in $X'$. As $X'$ is quasi-compact we see that $X'_ y$ is quasi-compact (Lemma 5.12.3). As $X'_ y \to X_ y$ is a surjective continuous map we conclude that $X_ y$ is quasi-compact (Lemma 5.12.7). $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #5058 by Laurent Moret-Bailly on

Comment #5276 by Johan on

There are also: